scholarly journals Targeting the Tumor Microenvironment for Improving Therapeutic Effectiveness in Cancer Immunotherapy: Focusing on Immune Checkpoint Inhibitors and Combination Therapies

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1188
Author(s):  
I-Tsu Chyuan ◽  
Ching-Liang Chu ◽  
Ping-Ning Hsu

Immune checkpoints play critical roles in the regulation of T-cell effector function, and the effectiveness of their inhibitors in cancer therapy has been established. Immune checkpoint inhibitors (ICIs) constitute a paradigm shift in cancer therapy in general and cancer immunotherapy in particular. Immunotherapy has been indicated to reinvigorate antitumor T-cell activity and dynamically modulate anticancer immune responses. However, despite the promising results in the use of immunotherapy in some cancers, numerous patients do not respond to ICIs without the existence of a clear predictive biomarker. Overall, immunotherapy involves a certain degree of uncertainty and complexity. Research on the exploration of cellular and molecular factors within the tumor microenvironment (TME) aims to identify possible mechanisms of immunotherapy resistance, as well as to develop novel combination strategies involving the specific targeting of the TME for cancer immunotherapy. The combination of this approach with other types of treatment, including immune checkpoint blockade therapy involving multiple agents, most of the responses and effects in cancer therapy could be significantly enhanced, but the appropriate combinations have yet to be established. Moreover, the in-depth exploration of complexity within the TME allows for the exploration of pathways of immune dysfunction. It may also aid in the identification of new therapeutic targets. This paper reviews recent advances in the improvement of therapeutic efficacy on the immune context of the TME and highlights its contribution to cancer immunotherapy.

2021 ◽  
Vol 11 ◽  
Author(s):  
Bonnie L. Russell ◽  
Selisha A. Sooklal ◽  
Sibusiso T. Malindisa ◽  
Lembelani Jonathan Daka ◽  
Monde Ntwasa

Through genetic and epigenetic alterations, cancer cells present the immune system with a diversity of antigens or neoantigens, which the organism must distinguish from self. The immune system responds to neoantigens by activating naïve T cells, which mount an anticancer cytotoxic response. T cell activation begins when the T cell receptor (TCR) interacts with the antigen, which is displayed by the major histocompatibility complex (MHC) on antigen-presenting cells (APCs). Subsequently, accessory stimulatory or inhibitory molecules transduce a secondary signal in concert with the TCR/antigen mediated stimulus. These molecules serve to modulate the activation signal’s strength at the immune synapse. Therefore, the activation signal’s optimum amplitude is maintained by a balance between the costimulatory and inhibitory signals. This system comprises the so-called immune checkpoints such as the programmed cell death (PD-1) and Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and is crucial for the maintenance of self-tolerance. Cancers often evade the intrinsic anti-tumor activity present in normal physiology primarily by the downregulation of T cell activation. The blockade of the immune checkpoint inhibitors using specific monoclonal antibodies has emerged as a potentially powerful anticancer therapy strategy. Several drugs have been approved mainly for solid tumors. However, it has emerged that there are innate and acquired mechanisms by which resistance is developed against these therapies. Some of these are tumor-intrinsic mechanisms, while others are tumor-extrinsic whereby the microenvironment may have innate or acquired resistance to checkpoint inhibitors. This review article will examine mechanisms by which resistance is mounted against immune checkpoint inhibitors focussing on anti-CTL4-A and anti-PD-1/PD-Ll since drugs targeting these checkpoints are the most developed.


2021 ◽  
Vol 9 (1) ◽  
pp. e001460 ◽  
Author(s):  
Xiuting Liu ◽  
Graham D Hogg ◽  
David G DeNardo

The clinical success of immune checkpoint inhibitors has highlighted the central role of the immune system in cancer control. Immune checkpoint inhibitors can reinvigorate anti-cancer immunity and are now the standard of care in a number of malignancies. However, research on immune checkpoint blockade has largely been framed with the central dogma that checkpoint therapies intrinsically target the T cell, triggering the tumoricidal potential of the adaptive immune system. Although T cells undoubtedly remain a critical piece of the story, mounting evidence, reviewed herein, indicates that much of the efficacy of checkpoint therapies may be attributable to the innate immune system. Emerging research suggests that T cell-directed checkpoint antibodies such as anti-programmed cell death protein-1 (PD-1) or programmed death-ligand-1 (PD-L1) can impact innate immunity by both direct and indirect pathways, which may ultimately shape clinical efficacy. However, the mechanisms and impacts of these activities have yet to be fully elucidated, and checkpoint therapies have potentially beneficial and detrimental effects on innate antitumor immunity. Further research into the role of innate subsets during checkpoint blockade may be critical for developing combination therapies to help overcome checkpoint resistance. The potential of checkpoint therapies to amplify innate antitumor immunity represents a promising new field that can be translated into innovative immunotherapies for patients fighting refractory malignancies.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1689 ◽  
Author(s):  
Edoardo Giannini ◽  
Andrea Aglitti ◽  
Mauro Borzio ◽  
Martina Gambato ◽  
Maria Guarino ◽  
...  

Despite progress in our understanding of the biology of hepatocellular carcinoma (HCC), this tumour remains difficult-to-cure for several reasons, starting from the particular disease environment where it arises—advanced chronic liver disease—to its heterogeneous clinical and biological behaviour. The advent, and good results, of immunotherapy for cancer called for the evaluation of its potential application also in HCC, where there is evidence of intra-hepatic immune response activation. Several studies advanced our knowledge of immune checkpoints expression in HCC, thus suggesting that immune checkpoint blockade may have a strong rationale even in the treatment of HCC. According to this background, initial studies with tremelimumab, a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitor, and nivolumab, a programmed cell death protein 1 (PD-1) antibody, showed promising results, and further studies exploring the effects of other immune checkpoint inhibitors, alone or with other drugs, are currently underway. However, we are still far from the identification of the correct setting, and sequence, where these drugs might be used in clinical practice, and their actual applicability in real-life is unknown. This review focuses on HCC immunobiology and on the potential of immune checkpoint blockade therapy for this tumour, with a critical evaluation of the available trials on immune checkpoint blocking antibodies treatment for HCC. Moreover, it assesses the potential applicability of immune checkpoint inhibitors in the real-life setting, by analysing a large, multicentre cohort of Italian patients with HCC.


2019 ◽  
Vol 4 (37) ◽  
pp. eaau6584 ◽  
Author(s):  
Dangge Wang ◽  
Tingting Wang ◽  
Haijun Yu ◽  
Bing Feng ◽  
Lei Zhou ◽  
...  

Immunological tolerance of tumors is characterized by insufficient infiltration of cytotoxic T lymphocytes (CTLs) and immunosuppressive microenvironment of tumor. Tumor resistance to immune checkpoint inhibitors due to immunological tolerance is an ongoing challenge for current immune checkpoint blockade (ICB) therapy. Here, we report the development of tumor microenvironment–activatable anti-PDL1 antibody (αPDL1) nanoparticles for combination immunotherapy designed to overcome immunological tolerance of tumors. Combination of αPDL1 nanoparticle treatment with near-infrared (NIR) laser irradiation–triggered activation of photosensitizer indocyanine green induces the generation of reactive oxygen species, which promotes the intratumoral infiltration of CTLs and sensitizes the tumors to PDL1 blockade therapy. We showed that the combination of antibody nanoparticles and NIR laser irradiation effectively suppressed tumor growth and metastasis to the lung and lymph nodes in mouse models. The nanoplatform that uses the antibody nanoparticle alone both for immune stimulation and PDL1 inhibition could be readily adapted to other immune checkpoint inhibitors for improved ICB therapy.


2021 ◽  
Author(s):  
Peng Lv ◽  
Xiaomei Chen ◽  
Shiying Fu ◽  
En Ren ◽  
Chao Liu ◽  
...  

Advances in the development of modern cancer immunotherapy and immune checkpoint inhibitors have dramatically changed the landscape of cancer treatment. However, most cancer patients are refractory to immune checkpoint inhibitors...


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 178-178
Author(s):  
Hongjae Chon

178 Background: Cancer immunotherapy targeting immune checkpoints are now emerging as a promising therapeutic strategy in various tumors. However, the treatment of T cell non-inflamed tumor which lacks intratumoral T cell infiltrates are still major clinical hurdle. Therefore, drugs that target signaling pathways to increase T cell infiltration in non-inflamed tumor microenvironment (TME) should be investigated. In this study, we aimed to explore the therapeutic potential of STING agonist in murine model of non-small cell lung cancer to overcome immunotherapy resistance. Methods: C57BL/6 mice, which are 6 to 8 weeks of age, were used for the experiment. Mice were injected with Lewis lung carcinoma cells on the right flank. STING agonist (cGAMP) was injected intratumorally. CD8+ and CD31+ cells were detected using immunofluorescence (IF) staining. Gene expressions of tumor microenvironment were analyzed by NanoString RNA sequencing. Flow cytometry (FACS) was performed to detect CD8+, CD4+, Treg and myeloid cell population. Tumor growths were evaluated in combination with anti-PD1 and STING agonist treatment. Results: Local injection of STING agonist effectively delayed tumor growth of LLC. STING agonist increased intratumoral CD8+ T cells and vascular disruption. Expressions of inhibitory checkpoint molecules (PD-1, PD-L1), cytokines (IFN), CD8+ and CD4+ T cells were increased, which showed that anti-cancer immune responses were augmented. Combination treatment of anti-PD-1 antibody and STING agonist synergistically decreased tumor growth. Conclusions: In this study, STING agonist was shown to delay tumor growth and remodel tumor microenvironment in non-inflamed lung carcinoma model. Combination therapy of STING agonist and immune checkpoint inhibitors (ICI) targeting PD-1 synergistically suppressed the growth of lung cancer which is resistant to ICI monotherapy. Collectively, our findings demonstrated that localized STING therapy effectively sensitizes non-inflamed lung cancer to systemic ICI treatment and induces a maximal anti-cancer immune response.


2021 ◽  
Vol 9 (1) ◽  
pp. e001660
Author(s):  
Fatima Ahmetlic ◽  
Josia Fauser ◽  
Tanja Riedel ◽  
Vera Bauer ◽  
Carolin Flessner ◽  
...  

BackgroundAlthough antibodies blocking immune checkpoints have already been approved for clinical cancer treatment, the mechanisms involved are not yet completely elucidated. Here we used a λ-MYC transgenic model of endogenously growing B-cell lymphoma to analyze the requirements for effective therapy with immune checkpoint inhibitors.MethodsGrowth of spontaneous lymphoma was monitored in mice that received antibodies targeting programmed cell death protein 1 and cytotoxic T lymphocyte-associated protein-4, and the role of different immune cell compartments and cytokines was studied by in vivo depletion experiments. Activation of T and natural killer cells and the induction of tumor senescence were analyzed by flow cytometry.ResultsOn immune checkpoint blockade, visible lymphomas developed at later time points than in untreated controls, indicating an enhanced tumor control. Importantly, 20% to 30% of mice were even long-term protected and did never develop clinical signs of tumor growth. The therapeutic effect was dependent on cytokine-induced senescence in malignant B cells. The proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor (TNF) were necessary for the survival benefit as well as for senescence induction in the λ-MYC model. Antibody therapy improved T-cell functions such as cytokine production, and long-time survivors were only observed in the presence of T cells. Yet, NK cells also had a pronounced effect on therapy-induced delay of tumor growth. Antibody treatment enhanced numbers, proliferation and IFN-γ expression of NK cells in developing tumors. The therapeutic effect was fully abrogated only after depletion of both, T cells and NK cells, or after ablation of either IFN-γ or TNF.ConclusionsTumor cell senescence may explain why patients responding to immune checkpoint blockade frequently show stable growth arrest of tumors rather than complete tumor regression. In the lymphoma model studied, successful therapy required both, tumor-directed T-cell responses and NK cells, which control, at least partly, tumor development through cytokine-induced tumor senescence.


2021 ◽  
Vol 7 (34) ◽  
pp. eabg4081
Author(s):  
Nader Yatim ◽  
Jeremy Boussier ◽  
Pauline Tetu ◽  
Nikaïa Smith ◽  
Timothée Bruel ◽  
...  

The COVID-19 pandemic has spread worldwide, yet the role of antiviral T cell immunity during infection and the contribution of immune checkpoints remain unclear. By prospectively following a cohort of 292 patients with melanoma, half of which treated with immune checkpoint inhibitors (ICIs), we identified 15 patients with acute or convalescent COVID-19 and investigated their transcriptomic, proteomic, and cellular profiles. We found that ICI treatment was not associated with severe COVID-19 and did not alter the induction of inflammatory and type I interferon responses. In-depth phenotyping demonstrated expansion of CD8 effector memory T cells, enhanced T cell activation, and impaired plasmablast induction in ICI-treated COVID-19 patients. The evaluation of specific adaptive immunity in convalescent patients showed higher spike (S), nucleoprotein (N), and membrane (M) antigen-specific T cell responses and similar induction of spike-specific antibody responses. Our findings provide evidence that ICI during COVID-19 enhanced T cell immunity without exacerbating inflammation.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14225-e14225
Author(s):  
Jessica Matta ◽  
Célia Matta ◽  
Emilie Thiebault Peter ◽  
David Moulaert ◽  
Robert Drillien ◽  
...  

e14225 Background: Activity of immune checkpoint inhibitors relies mainly on the presence of an immune response directed against neoantigens resulting from tumor specific mutations. The induction and/or amplification of such an immune response is expected to increase the activity of these therapies. We describe here a novel immunization platform developed for the purpose of personalized cancer immunotherapy. This platform integrates a DNA vector coding for neoantigens, a live modified vaccinia of strain Ankara (MVA) used as a physiologic adjuvant and anti-CTLA-4 as a locally acting early immune checkpoint blocker. Methods: Immune potency was assessed in C57BL6 mice injected subcutaneously three times five days apart with an ovalbumine (OVA) expressing DNA vector (100 µg), either alone or in combination with increasing doses of MVA (up to 2.5x107 plaque forming units, pfu) and increasing doses of anti-CTLA-4 (up to 100 µg). OVA specific immune responses were measured by ELISpot. Anti-tumor efficacy was then investigated with a similar administration scheme in a therapeutic B16F10 mice melanoma model with a DNA vector coding for the B16F10-M30 tumor neoantigen. Results: At an optimal dose of 2.5x106 pfu, MVA significantly improved OVA specific immune response up to 10 times higher as compared to vector alone. Addition of CTLA-4 blockade further increased the magnitude of response, up to 30 times higher than with vector alone. Both MVA and CTLA-4 demonstrated a bell-shaped dose dependent effect. In tumor-bearing animals, 80% experienced durable tumor-free survival when treated with the combination therapy as compared to less than 20% in untreated animals or animals treated with each component independently. Treatment appeared feasible and well-tolerated. Conclusions: Neoantigen coding DNA vector, MVA and CTLA-4 immune checkpoint blockade, when co-administered in immunocompetent C57BL6 mice, acted synergistically to induce a cellular immune response. The same approach translated into a strong anti-tumoral response in an aggressive melanoma model. This combined immunization platform appears as a potential novel way to enhance clinical benefit from current immune checkpoint inhibitors.


ESMO Open ◽  
2020 ◽  
Vol 4 (Suppl 3) ◽  
pp. e000684 ◽  
Author(s):  
Leticia De Mattos-Arruda ◽  
Juan Blanco-Heredia ◽  
Carmen Aguilar-Gurrieri ◽  
Jorge Carrillo ◽  
Julià Blanco

The success of cancer therapies with immune checkpoint inhibitors is transforming the treatment of patients with cancer and fostering cancer research. Therapies that target immune checkpoint inhibitors have shown unprecedented rates of durable long-lasting responses in patients with various cancer types, but only in a fraction of patients. Thus, novel approaches are needed to make immunotherapy more precise and also less toxic. The advances of next-generation sequencing technologies have allowed fast detection of somatic mutations in genes present in the exome of an individual tumour. Targeting neoantigens, the mutated peptides expressed only by tumour cells, may enable antitumour T-cell responses and tumour destruction without causing harm to healthy tissues. Currently, neoantigens can be identified in tumour clinical samples by using genomic-based computational tools. The two main treatment modalities targeting neoantigens that have been investigated in clinical trials are personalised vaccines and tumour infiltrating lymphocytes-based adoptive T-cell therapy. In this mini review, we discuss the promises and challenges for using neoantigens as emergent targets to personalise and guide cancer immunotherapy in a broader set of cancers.


Sign in / Sign up

Export Citation Format

Share Document