scholarly journals 3D Whole-Brain Imaging Approaches to Study Brain Tumors

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1897
Author(s):  
Julian Taranda ◽  
Sevin Turcan

Although our understanding of the two-dimensional state of brain tumors has greatly expanded, relatively little is known about their spatial structures. The interactions between tumor cells and the tumor microenvironment (TME) occur in a three-dimensional (3D) space. This volumetric distribution is important for elucidating tumor biology and predicting and monitoring response to therapy. While static 2D imaging modalities have been critical to our understanding of these tumors, studies using 3D imaging modalities are needed to understand how malignant cells co-opt the host brain. Here we summarize the preclinical utility of in vivo imaging using two-photon microscopy in brain tumors and present ex vivo approaches (light-sheet fluorescence microscopy and serial two-photon tomography) and highlight their current and potential utility in neuro-oncology using data from solid tumors or pathological brain as examples.

2019 ◽  
Author(s):  
Nirmal Das ◽  
Ewa Baczynska ◽  
Monika Bijata ◽  
Blazej Ruszczycki ◽  
Andre Zeug ◽  
...  

AbstractThree dimensional segmentation and analysis of dendritic spines involve two major challenges: 1) how to segment individual spines from the dendrites and 2) how to quantitatively assess the morphology of individual spines. We developed a software named 3dSpAn to address these two issues by implementing our previously published 3D multiscale opening algorithm in shared intensity space and using effective morphological features for individual dendritic spine plasticity analysis. 3dSpAn consists of four modules: Preprocessing and ROI selection, Intensity thresholding and seed selection, Multiscale segmentation and Quantitative morphological feature extraction. We show the results of segmentation and morphological analysis for different observation methods, including in vitro and ex vivo imaging with confocal microscopy, and in vivo samples, using high-resolution two-photon microscopy. The software is freely available, the source code, windows installer, the software manual and video tutorial can be obtained from: https://sites.google.com/view/3dSpAn/.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi12-vi12
Author(s):  
Georgios Batsios ◽  
Meryssa Tran ◽  
Céline Taglang ◽  
Anne Marie Gillespie ◽  
Sabrina Ronen ◽  
...  

Abstract Metabolic reprogramming is a fundamental hallmark of cancer, which can be exploited for non-invasive tumor imaging. Deuterium magnetic resonance spectroscopy (2H-MRS) recently emerged as a novel, translational method of interrogating flux from 2H-labeled substrates to metabolic products. However, to date, preclinical studies have been performed in vivo, an endeavor which suffers from low-throughput and potential wastage of animal life, especially when considering studies of treatment response. Developing in vitro assays for monitoring metabolism of 2H-labeled substrates will enhance throughput, lead to the rapid evaluation of new 2H-based probes and enable identification of treatment response biomarkers, thereby allowing the best 2H-based probes to be translated for further in vivo assessment. The goal of this study was to develop a preclinical cell-based platform for quantifying metabolism of 2H-labeled probes in brain tumor models. Since the Warburg effect, which is characterized by elevated glycolytic production of lactate, is a metabolic phenotype of cancer, including brain tumors, we examined metabolism of 2H-glucose or 2H-pyruvate in patient-derived glioblastoma (GBM6) and oligodendroglioma (BT88) cells and compared to normal human astrocytes (NHACONTROL). Following incubation in media containing [6,6’-2H]glucose or [U-2H]pyruvate, 2H-MR spectra obtained from live cell suspensions showed elevated 2H-lactate production in GBM6 and BT88 cells relative to NHACONTROL. Importantly, 2H-lactate production from [6,6’-2H]glucose or from [U-2H]pyruvate was reduced in GBM6 or BT88 cells subjected to irradiation and temozolomide, which is standard of care for glioma patients, pointing to the utility of this method for detecting response to therapy. Collectively, we have, for the first time, demonstrated the ability to quantify metabolism of 2H-MRS probes in live cell suspensions and validated the utility of our assay for differentiating tumor from normal cells and assessing response to therapy. Our studies will expedite the identification of novel 2H-MRS probes for imaging brain tumors and potentially other types of cancer.


2011 ◽  
Vol 106 (11) ◽  
pp. 939-946 ◽  
Author(s):  
Mirjam oude Egbrink ◽  
Viviane Heijnen ◽  
Remco Megens ◽  
Wim Engels ◽  
Hans Vink ◽  
...  

SummaryThe endothelial glycocalyx (EG), the luminal cover of endothelial cells, is considered to be atheroprotective. During atherogenesis, platelets adhere to the vessel wall, possibly triggered by simultaneous EG modulation. It was the objective of this study to investigate both EG thickness and platelet-vessel wall interactions during atherogenesis in the same experimental model. Intravital fluorescence microscopy was used to study platelet-vessel wall interactions in vivo in common carotid arteries and bifurcations of C57bl6/J (B6) and apolipoprotein E knock-out (ApoE-/-) mice (age 7 – 31 weeks). At the same locations, EG thickness was determined ex vivo using two-photon laser scanning microscopy. In ApoE-/- bifurcations the overall median level of adhesion was 48 platelets/mm2 (interquartile range: 16 – 80), which was significantly higher than in B6 bifurcations (0 (0 – 16), p = 0.001). This difference appeared to result from a significant age-dependent increase in ApoE-/- mice, while no such change was observed in B6 mice. At the same time, the EG in ApoE-/- bifurcations was significantly thinner than in B6 bifurcations (2.2 vs. 2.5 μm, respectively; p < 0.05). This resulted from the fact that in B6 bifurcations EG thickness increased with age (from 2.4 μm in young mice to 3.0 μm in aged ones), while in bifurcations of ApoE-/- mice this growth appeared to be absent (2.2 μm at all ages). During atherogenesis, platelet adhesion to the wall of the carotid artery bifurcation increases significantly. At the same location, EG growth with age is hampered. Therefore, glycocalyx-reinforcing strategies could possibly ameliorate atherosclerosis.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Timothy J Duerr ◽  
Ester Comellas ◽  
Eun Kyung Jeon ◽  
Johanna E Farkas ◽  
Marylou Joetzjer ◽  
...  

Measuring nascent macromolecular synthesis in vivo is key to understanding how cells and tissues progress through development and respond to external cues. Here we perform in vivo injection of alkyne- or azide-modified analogs of thymidine, uridine, methionine, and glucosamine to label nascent synthesis of DNA, RNA, protein, and glycosylation. Three-dimensional volumetric imaging of nascent macromolecule synthesis was performed in axolotl salamander tissue using whole-mount click chemistry-based fluorescent staining followed by light sheet fluorescent microscopy. We also developed an image processing pipeline for segmentation and classification of morphological regions of interest and individual cells, and we apply this pipeline to the regenerating humerus. We demonstrate our approach is sensitive to biological perturbations by measuring changes in DNA synthesis after limb denervation. This method provides a powerful means to quantitatively interrogate macromolecule synthesis in heterogenous tissues at the organ, cellular, and molecular levels of organization.


2019 ◽  
Vol 47 (5) ◽  
pp. 1302-1313 ◽  
Author(s):  
Camilla Christensen ◽  
Lotte K. Kristensen ◽  
Maria Z. Alfsen ◽  
Carsten H. Nielsen ◽  
Andreas Kjaer

Abstract Purpose Despite remarkable clinical responses and prolonged survival across several cancers, not all patients benefit from PD-1/PD-L1 immune checkpoint blockade. Accordingly, assessment of tumour PD-L1 expression by immunohistochemistry (IHC) is increasingly applied to guide patient selection, therapeutic monitoring, and improve overall response rates. However, tissue-based methods are invasive and prone to sampling error. We therefore developed a PET radiotracer to specifically detect PD-L1 expression in a non-invasive manner, which could be of diagnostic and predictive value. Methods Anti-PD-L1 (clone 6E11, Genentech) was site-specifically conjugated with DIBO-DFO and radiolabelled with 89Zr (89Zr-DFO-6E11). 89Zr-DFO-6E11 was optimized in vivo by longitudinal PET imaging and dose escalation with excess unlabelled 6E11 in HCC827 tumour-bearing mice. Specificity of 89Zr-DFO-6E11 was evaluated in NSCLC xenografts and syngeneic tumour models with different levels of PD-L1 expression. In vivo imaging data was supported by ex vivo biodistribution, flow cytometry, and IHC. To evaluate the predictive value of 89Zr-DFO-6E11 PET imaging, CT26 tumour-bearing mice were subjected to external radiation therapy (XRT) in combination with PD-L1 blockade. Results 89Zr-DFO-6E11 was successfully labelled with a high radiochemical purity. The HCC827 tumours and lymphoid tissue were identified by 89Zr-DFO-6E11 PET imaging, and co-injection with 6E11 increased the relative tumour uptake and decreased the splenic uptake. 89Zr-DFO-6E11 detected the differences in PD-L1 expression among tumour models as evaluated by ex vivo methods. 89Zr-DFO-6E11 quantified the increase in PD-L1 expression in tumours and spleens of irradiated mice. XRT and anti-PD-L1 therapy effectively inhibited tumour growth in CT26 tumour-bearing mice (p < 0.01), and the maximum 89Zr-DFO-6E11 tumour-to-muscle ratio correlated with response to therapy (p = 0.0252). Conclusion PET imaging with 89Zr-DFO-6E11 is an attractive approach for specific, non-invasive, whole-body visualization of PD-L1 expression. PD-L1 expression can be modulated by radiotherapy regimens and 89Zr-DFO-6E11 PET is able to monitor these changes and predict the response to therapy in an immunocompetent tumour model.


2020 ◽  
Vol 13 (02) ◽  
pp. 2050007
Author(s):  
Joanne Li ◽  
Madison N. Wilson ◽  
Andrew J. Bower ◽  
Marina Marjanovic ◽  
Eric J. Chaney ◽  
...  

To date, numerous studies have been performed to elucidate the complex cellular dynamics in skin diseases, but few have attempted to characterize these cellular events under conditions similar to the native environment. To address this challenge, a three-dimensional (3D) multimodal analysis platform was developed for characterizing in vivo cellular dynamics in skin, which was then utilized to process in vivo wound healing data to demonstrate its applicability. Special attention is focused on in vivo biological parameters that are difficult to study with ex vivo analysis, including 3D cell tracking and techniques to connect biological information obtained from different imaging modalities. These results here open new possibilities for evaluating 3D cellular dynamics in vivo, and can potentially provide new tools for characterizing the skin microenvironment and pathologies in the future.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Uk Jegal ◽  
Jun Ho Lee ◽  
Jungbin Lee ◽  
Hyerin Jeong ◽  
Myoung Joon Kim ◽  
...  

Abstract Gatifloxacin is a 4th generation fluoroquinolone antibiotic used in the clinic to treat ocular infection. One limitation of gatifloxacin is its relatively poor corneal penetration, and the increase of its trans-corneal delivery would be beneficial to reduce the amount or frequency of daily dose. In this study, ultrasound treatment was applied to enhance the trans-corneal delivery of gatifloxacin without damage. Experiments were conducted on mouse eyes in ex vivo and in vivo conditions. Ultrasound waves with 1 MHz in frequency, 1.3 W/cm2 in intensity were applied onto the mouse cornea for 5 minutes, and then gatifloxacin ophthalmic solution was instilled and left there for 10 minutes. 3D gatifloxacin distribution in the cornea was measured by two-photon microscopy (TPM) imaging based on its intrinsic fluorescence. Longitudinal TPM imaging of ultrasound treated mouse corneas showed the increase of initial gatifloxacin intensities on the corneal surface compared to untreated mouse corneas by 67%, and then the increased gatifloxacin delivery into the cornea from the surface at later time. The delivered gatifloxacin in the corneal epithelium stayed longer in the ultrasound treated corneas than in the untreated corneas. The enhanced trans-corneal delivery and extended stay of gatifloxacin in the mouse cornea by ultrasound treatment could be beneficial for therapeutic effects. This study demonstrated the detail process of enhanced trans-corneal gatifloxacin delivery by ultrasound treatment.


2003 ◽  
Vol 2 (3) ◽  
pp. 153535002003031
Author(s):  
Rex A. Moats ◽  
Sendhil Velan-Mullan ◽  
Russell Jacobs ◽  
Ignacio Gonzalez-Gomez ◽  
David J. Dubowitz ◽  
...  

In vivo imaging methodologies allow for serial measurement of tumor size, circumventing the need for sacrificing mice at given time points. In orthotopically transplanted murine models of brain tumors, cross-section micro-MRI allows for visualization and measurement of the physically inaccessible tumors. To allow for long resident times of a contrast agent in the tumor, intraperitoneal administration was used as a route of injection for contrast-enhanced micro-MRI, and a simple method for relative tumor volume measurements was examined. A strategy for visualizing the variability of the delayed tumor enhancement was developed. These strategies were applied to monitor the growth of brain tumors xenotransplanted into nude mice and either treated with the antiangiogenic peptide EMD 121974 or an inactive control peptide. Each mouse was used as its own control. Serial imaging was done weekly, beginning at Day 7 after tumor cell implantation and continued for 7 weeks. Images obtained were reconstructed on the MRI instrument. The image files were transferred off line to be postprocessed to assess tumor growth (volume) and variability in enhancement (three-dimensional [3-D] intensity models). In a small study, tumor growth and response to treatment were followed using this methodology and the high-resolution images displayed in 3-D allowed for straightforward qualitative assessment of variable enhancement related to vascular factors and tumor age.


Sign in / Sign up

Export Citation Format

Share Document