scholarly journals The Hypoxic Microenvironment Induces Stearoyl-CoA Desaturase-1 Overexpression and Lipidomic Profile Changes in Clear Cell Renal Cell Carcinoma

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2962
Author(s):  
Juan Pablo Melana ◽  
Francesco Mignolli ◽  
Tania Stoyanoff ◽  
María V. Aguirre ◽  
María A. Balboa ◽  
...  

Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cell carcinoma (RCC). It is characterized by a high cell proliferation and the ability to store lipids. Previous studies have demonstrated the overexpression of enzymes associated with lipid metabolism, including stearoyl-CoA desaturase-1 (SCD-1), which increases the concentration of unsaturated fatty acids in tumor cells. In this work, we studied the expression of SCD-1 in primary ccRCC tumors, as well as in cell lines, to determine its influence on the tumor lipid composition and its role in cell proliferation. The lipidomic analyses of patient tumors showed that oleic acid (18:1n-9) is one of the major fatty acids, and it is particularly abundant in the neutral lipid fraction of the tumor core. Using a ccRCC cell line model and in vitro-generated chemical hypoxia, we show that SCD-1 is highly upregulated (up to 200-fold), and this causes an increase in the cellular level of 18:1n-9, which, in turn, accumulates in the neutral lipid fraction. The pharmacological inhibition of SCD-1 blocks 18:1n-9 synthesis and compromises the proliferation. The addition of exogenous 18:1n-9 to the cells reverses the effects of SCD-1 inhibition on cell proliferation. These data reinforce the role of SCD-1 as a possible therapeutic target.

2020 ◽  
Vol 20 (5) ◽  
pp. 1-1
Author(s):  
Eric Jeffords ◽  
Samuel Freeman ◽  
Breanna Cole ◽  
Kate Root ◽  
Thierry Chekouo ◽  
...  

Metabolites ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 509
Author(s):  
Giuseppe Lucarelli ◽  
Matteo Ferro ◽  
Davide Loizzo ◽  
Cristina Bianchi ◽  
Daniela Terracciano ◽  
...  

Clear cell renal cell carcinoma (ccRCC) is fundamentally a metabolic disease. Given the importance of lipids in many cellular processes, in this study we delineated a lipidomic profile of human ccRCC and integrated it with transcriptomic data to connect the variations in cancer lipid metabolism with gene expression changes. Untargeted lipidomic analysis was performed on 20 ccRCC and 20 paired normal tissues, using LC-MS and GC-MS. Different lipid classes were altered in cancer compared to normal tissue. Among the long chain fatty acids (LCFAs), significant accumulations of polyunsaturated fatty acids (PUFAs) were found. Integrated lipidomic and transcriptomic analysis showed that fatty acid desaturation and elongation pathways were enriched in neoplastic tissue. Consistent with these findings, we observed increased expression of stearoyl-CoA desaturase (SCD1) and FA elongase 2 and 5 in ccRCC. Primary renal cancer cells treated with a small molecule SCD1 inhibitor (A939572) proliferated at a slower rate than untreated cancer cells. In addition, after cisplatin treatment, the death rate of tumor cells treated with A939572 was significantly greater than that of untreated cancer cells. In conclusion, our findings delineate a ccRCC lipidomic signature and showed that SCD1 inhibition significantly reduced cancer cell proliferation and increased cisplatin sensitivity, suggesting that this pathway can be involved in ccRCC chemotherapy resistance.


2017 ◽  
Vol 43 (6) ◽  
pp. 2420-2433 ◽  
Author(s):  
Wen Xiao ◽  
Ning Lou ◽  
Hailong Ruan ◽  
Lin Bao ◽  
Zhiyong Xiong ◽  
...  

Background/Aims: We previously performed microRNA (miRNA) microarray to identify effective indicators of clear cell renal cell carcinoma (ccRCC) tissue samples and preoperative/postoperative plasma in which we identified miR-144-3p as an oncomiRNA. However, the molecular mechanism of miR-144-3p remains unclear. This study aims to explore the roles of miR-144-3p in the invasion, migration and Sunitinib-resistance in ccRCC and to elucidate the underlying mechanisms. Methods: Gain and loss of function approaches were used to investigate the cell proliferation, cycle distribution, clonogenicity, migration, invasion, chemosensitivity of miR-144-3p in vitro. The xenograft model was used to assess the effects of miR-144-3p overexpression on tumorigenesis. Bioinformatics analysis and dual-luciferase reporter assay were used to indentify AT-rich interactive domain 1A (ARID1A) as a direct target gene of miR-144-3p. Quantitative RT-PCR, Western blotting, and immunohistochemical (IHC) staining were used to explore ARID1A expression level of the mRNA and protein. Results: We found that miR-144-3p overexpression enhanced cell proliferation, clonogenicity, migration, invasion, and chemoresistance in ccRCC cells. Notably, the oncotumor activities of miR-144-3p were mediated by repressing the expression of ARID1A. The downregulation of ARIDIA could promote the function of miR-144-3p in cell proliferation, metastasis and chemoresistance. Consistently, ARID1A mRNA and protein levels were decreased in ccRCC and in nude mice, and they negatively correlated with miR-144-3p. Conclusion: Higher miR-144-3p may enhance malignancy and resistance to Sunitinib in ccRCC by targeting ARID1A, the observations may uncover novel strategies of ccRCC treatment.


Sign in / Sign up

Export Citation Format

Share Document