scholarly journals Multimodality Management of EBV-Associated Nasopharyngeal Carcinoma

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6078
Author(s):  
Justin Yu ◽  
Tiffany T. Pham ◽  
Narine Wandrey ◽  
Mackenzie Daly ◽  
Sana D. Karam

Nasopharyngeal carcinoma (NPC) is a rare cancer of the nasopharyngeal mucosa with a specific geographic predisposition. NPC is often associated with Epstein–Barr Virus (EBV) infection and as a result contains many characteristic biomarkers. Treatment of locally-contained NPC is generally achieved through use of radiotherapy (RT), as part of a multimodality treatment regimen. Induction chemotherapy followed by concurrent RT and platinum-based chemotherapy regimen has emerged as the definitive treatment of choice for locoregionally-advanced NPC. Recently, immunotherapy is finding a role in the treatment of recurrent or metastatic NPC. Immune checkpoint blockade therapies targeted against the programmed death-1 (PD-1) receptor have demonstrated efficacy in early phase clinical trials, with ongoing phase III trials in effect. Biomarkers for treatment efficacy remain an ongoing area of investigation, with important prognostic implications on the horizon.

2019 ◽  
Vol 92 (1102) ◽  
pp. 20190209 ◽  
Author(s):  
Xue-Song Sun ◽  
Xiao-Yun Li ◽  
Qiu-Yan Chen ◽  
Lin-Quan Tang ◽  
Hai-Qiang Mai

Nasopharyngeal carcinoma (NPC) is a malignancy with unique clinical biological profiles such as associated Epstein-Barr virus infection and high radiosensitivity. Radiotherapy has long been recognized as the mainstay for the treatment of NPC. However, the further efficacy brought by radical radiotherapy has reached the bottleneck in advanced patients, who are prone to develop recurrence and distant metastasis after treatment. The application of photon therapy makes it possible for radiation dose escalation in refractory cases and may provide second chance for recurrent patients with less unrecoverable tissue damage. The concept of adaptive radiotherapy is put forward in consideration of target volume shrinkage during treatment. The replanning procedure offers better protection for the organ at risk. However, the best timing and candidates for adaptive radiotherapy is still under debate. The current tendency of artificial intelligence in NPC mainly focuses on image recognition, auto-segmentation and dose prediction. Although artificial intelligence is still in developmental stage, the future of it is promising. To further improve the efficacy of NPC, multimodality treatment is encouraged. In-depth studies on genetic and epigenetic variations help to explain the great heterogeneity among patients, and could further be applied to precise screening and prediction, personalized radiotherapy and the evolution of targeted drugs. Given the clinical benefit of immunotherapy in other cancers, the application of immunotherapy, especially immune checkpoint inhibitor, in NPC is also of great potential. Results from ongoing clinical trials combining immunotherapy with radiotherapy in NPC are expected.


Author(s):  
R. Stephens ◽  
K. Traul ◽  
D. Woolf ◽  
P. Gaudreau

A number of antigens have been found associated with persistent EBV infections of lymphoblastoid cells. Identification and localization of these antigens were principally by immunofluorescence (IF) techniques using sera from patients with nasopharyngeal carcinoma (NPC), Burkitt lymphoma (BL), and infectious mononucleosis (IM). Our study was mainly with three of the EBV related antigens, a) virus capsid antigen (VCA), b) membrane antigen (MA), and c) early antigens (EA) using immunoperoxidase (IP) techniques with electron microscopy (EM) to elucidate the sites of reactivity with EBV and EBV infected cells.Prior to labeling with horseradish peroxidase (HRP), sera from NPC, IM, and BL cases were characterized for various reactivities by the indirect IF technique. Modifications of the direct IP procedure described by Shabo and the indirect IP procedure of Leduc were made to enhance penetration of the cells and preservation of antigen reactivity.


2020 ◽  
Vol 13 (3) ◽  
pp. 192-205 ◽  
Author(s):  
Fanghong Lei ◽  
Tongda Lei ◽  
Yun Huang ◽  
Mingxiu Yang ◽  
Mingchu Liao ◽  
...  

Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. As a neoplastic disorder, NPC is a highly malignant squamous cell carcinoma that is derived from the nasopharyngeal epithelium. NPC is radiosensitive; radiotherapy or radiotherapy combining with chemotherapy are the main treatment strategies. However, both modalities are usually accompanied by complications and acquired resistance to radiotherapy is a significant impediment to effective NPC therapy. Therefore, there is an urgent need to discover effective radio-sensitization and radio-resistance biomarkers for NPC. Recent studies have shown that Epstein-Barr virus (EBV)-encoded products, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which share several common signaling pathways, can function in radio-related NPC cells or tissues. Understanding these interconnected regulatory networks will reveal the details of NPC radiation sensitivity and resistance. In this review, we discuss and summarize the specific molecular mechanisms of NPC radio-sensitization and radio-resistance, focusing on EBV-encoded products, miRNAs, lncRNAs and circRNAs. This will provide a foundation for the discovery of more accurate, effective and specific markers related to NPC radiotherapy. EBVencoded products, miRNAs, lncRNAs and circRNAs have emerged as crucial molecules mediating the radio-susceptibility of NPC. This understanding will improve the clinical application of markers and inform the development of novel therapeutics for NPC.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Amina Gihbid ◽  
Raja Benzeid ◽  
Abdellah Faouzi ◽  
Jalal Nourlil ◽  
Nezha Tawfiq ◽  
...  

Abstract Background The identification of effective prognosis biomarkers for nasopharyngeal carcinoma (NPC) is crucial to improve treatment and patient outcomes. In the present study, we have attempted to evaluate the correlation between pre-treatment plasmatic Epstein-Barr virus (EBV) DNA load and the conventional prognostic factors in Moroccan patients with NPC. Methods The present study was conducted on 121 histologically confirmed NPC patients, recruited from January 2017 to December 2018. Circulating levels of EBV DNA were measured before therapy initiation using real-time quantitative PCR. Results Overall, undifferentiated non-keratinizingcarcinoma type was the most common histological type (90.1 %), and 61.8 % of patients were diagnosed at an advanced disease stage (IV). Results of pre-treatment plasma EBV load showed that 90.9 % of patients had detectable EBV DNA, with a median plasmatic viral load of 7710 IU/ml. The correlation between pre-treatment EBV DNA load and the conventional prognostic factors showed a significant association with patients’ age (p = 0.01), tumor classification (p = 0.01), lymph node status (p = 0.003), metastasis status (p = 0.00) and overall cancer stage (p = 0.01). Unexpectedly, a significant higher level of pre-treatment EBV DNA was also found in plasma of NPC patients with a family history of cancer (p = 0.04). The risk of NPC mortality in patients with high pretreatment EBVDNA levels was significantly higher than that of those with low pre-treatment plasma EBV-DNA levels (p < 0.05). Furthermore, patients with high pre-treatment EBV-DNA levels (≥ 2000, ≥ 4000) had a significant low overall survival (OS) rates (p < 0.05). Interestingly, lymph node involvement, metastasis status and OS were found to be the most important factors influencing the EBV DNA load in NPC patients. Conclusions The results of the present study clearly showed a high association between pre-treatment EBV DNA load, the crucial classical prognostic factors (T, N, M and disease stage) of NPC and OS, suggesting that pre-treatment EBV DNA can be a useful prognostic biomarker in clinical decision-making and improving NPC treatment in Morocco.


Sign in / Sign up

Export Citation Format

Share Document