scholarly journals Genomic Instability and Replicative Stress in Multiple Myeloma: The Final Curtain?

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 25
Author(s):  
Oronza A. Botrugno ◽  
Giovanni Tonon

Multiple Myeloma (MM) is a genetically complex and heterogeneous hematological cancer that remains incurable despite the introduction of novel therapies in the clinic. Sadly, despite efforts spanning several decades, genomic analysis has failed to identify shared genetic aberrations that could be targeted in this disease. Seeking alternative strategies, various efforts have attempted to target and exploit non-oncogene addictions of MM cells, including, for example, proteasome inhibitors. The surprising finding that MM cells present rampant genomic instability has ignited concerted efforts to understand its origin and exploit it for therapeutic purposes. A credible hypothesis, supported by several lines of evidence, suggests that at the root of this phenotype there is intense replicative stress. Here, we review the current understanding of the role of replicative stress in eliciting genomic instability in MM and how MM cells rely on a single protein, Ataxia Telangiectasia-mutated and Rad3-related protein, ATR, to control and survive the ensuing, potentially fatal DNA damage. From this perspective, replicative stress per se represents not only an opportunity for MM cells to increase their evolutionary pool by increasing their genomic heterogeneity, but also a vulnerability that could be leveraged for therapeutic purposes to selectively target MM tumor cells.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1418-1418
Author(s):  
Masood A. Shammas ◽  
Hemant Koley ◽  
Sima Shah ◽  
Ramesh B. Batchu ◽  
Pierfrancesco Tassone ◽  
...  

Abstract Multiple myeloma (MM) is associated with significant genomic instability. Homologous recombination (HR), which is elevated in MM, is considered to be responsible for this instability. As endonucleases play an important role in mediating HR, here we have evaluated the role of endonuclease in biology and progression of MM. Gene expression profile using Affymetrix U133 array showed > 2 fold elevation of Ape1 or Ape2 or both in 5 of 6 MM cell lines and 12 of 15 patient samples. Immunocytochemistry confirmed upregulation of Ape1 protein in MM cell lines. A Plasmid degradation assay confirmed significantly elevated endonuclease activity in MM cells compared to normal plasma cells. To identify the pre-dominating endonuclease activity, the degradation assay was carried out in the presence of specific endonuclease inhibitors. Harmane and methoxyamine (MA), specific inhibitors of apurinic/apyrimidinic endonucleases effectively inhibited significant endonuclease activity, while other endonuclease inhibitors ACPD and FK506 had minimal effects, confirming predominant role of apurinic/apyrimidinic endonucleases (APE) in mediating increased endonuclease activity in MM. We investigated the role of elevated APE endonuclease activity on DNA recombination and subsequent genomic re-arrangements. Using a plasmid-based assay we have previously demonstrated significantly elevated homologous recombination (HR) in MM. Inhibition of endonuclease by methoxyamine suppressed HR activity by 85 ± 2% in MM cells. Next, we evaluated whether inhibition of HR by methoxyamine can affect the frequency of acquisition of new genetic changes in MM cells using single nucleotide polymorphism (SNP) arrays (Affymetrix) as indicator of genomic instability. In three independent experiments, methoxyamine reduced the acquisition of new loss of heterozygocity (LOH) loci by an average of 71%. These data suggest that the dysregulated APE endonucleases contribute significantly to the genomic instability, acquisition of new mutations and progression of MM and provides the rationale for targeting endonuclease activity to prevent disease progression including development of drug resistance.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1561-1561
Author(s):  
Masood A. Shammas ◽  
Hemanta Koley ◽  
Paola Neri ◽  
Pierfrancesco Tassone ◽  
Ramesh B. Batchu ◽  
...  

Abstract Genetic instability is a prominent feature of most cancers including multiple myeloma (MM) and is responsible for ongoing accrual of mutational changes which may lead to development of drug resistance and metastasis. The molecular basis for the generation of genetic diversity in MM is therefore extremely important to understand carcinogenesis and to identify novel targets for treatment. As genomic rearrangements require excision of DNA, we hypothesized that an elevated endonuclease activity may induce recombination and subsequent genomic instability in cancer cells. We developed a plasmid degradation assay that confirmed significantly elevated endonuclease activity in MM cells compared to normal plasma cells. To identify the pre-dominating endonuclease the degradation assay was carried out in the presence of specific endonuclease inhibitors, which identified apurinic/apyrimidinic endonuclease (Ape1 and Ape2) as the predominant endonucleases in mediating increased endonuclease activity in MM. Gene expression analysis confirmed > 2 fold elevation of Ape1 or Ape2 or both in 5 of 6 MM cell lines and 12 of 15 patient samples. Both immunocytochemistry and western blot analyses confirmed upregulation of Ape1 protein in all MM cell lines and patient samples. Next, we investigated the role of elevated APE endonuclease activity in DNA recombination and subsequent genomic re-arrangements. Using a plasmid-based assay we have previously demonstrated significantly elevated homologous recombination (HR) in MM. To investigate the role of elevated AP endonuclease activity in MM, we cultured myeloma cells in the presence of methoxyamine (MX), which specifically inhibits AP endonuclease activity, and evaluated its effect on HR activity and genome-wide appearance of new mutations. Exposure of intact myeloma cells to MX resulted in > 90% inhibition of HR activity and a significant (71±10.9%; p<0.05) reduction in the appearance of new mutations compared to untreated cells, as assessed by genome-wide loss of heterozygosity (LOH) assay (Affymetrix). We also evaluated the effects of overexpression of Ape1 & 2 in normal fibroblasts which have low endonuclease activity. The transgenic upregulation of AP endonucleases (Ape1 and Ape2) in normal cells led to a significant increase in the lecombination activity, leading to a marked mutational instability as indicated by the appearance of over 20,063 and 20,143 new LOH loci per 100,000 polymorphic regions examined throughout the genome, at population doublings 25 and 50 respectively. Mutational instability was also associated with chromosomal instability confirmed by spectral karyotyping of these cells showing significant numerical and structural chromosomal abnormalities. These changes were associated with indefinite growth of cells and formation of tumors when injected in SCID mice. These data suggest that elevated AP endonuclease may be responsible for mutational and chromosomal instabilities, leading to progression of myeloma.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Pilar de la Puente ◽  
Barbara Muz ◽  
Feda Azab ◽  
Micah Luderer ◽  
Abdel Kareem Azab

Multiple myeloma (MM) is a hematological malignancy that remains incurable because most patients will eventually relapse or become refractory to the treatments. Although the treatments have improved, the major problem in MM is the resistance to therapy. Novel agents are currently in development for the treatment of relapsed/refractory MM, including immunomodulatory drugs, proteasome inhibitors, monoclonal antibodies, cell signaling targeted therapies, and strategies targeting the tumor microenvironment. We have previously reviewed in detail the contemporary immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies therapies for MM. Therefore, in this review, we focused on the role of molecular targeted therapies in the treatment of relapsed/refractory multiple myeloma, including cell signaling targeted therapies (HDAC, PI3K/AKT/mTOR, p38 MAPK, Hsp90, Wnt, Notch, Hedgehog, and cell cycle) and strategies targeting the tumor microenvironment (hypoxia, angiogenesis, integrins, CD44, CXCR4, and selectins). Although these novel agents have improved the therapeutic outcomes for MM patients, further development of new therapeutic agents is warranted.


2021 ◽  
Vol 5 (18) ◽  
pp. 3656-3667
Author(s):  
Xin Li ◽  
Jingjing Wang ◽  
Shuai Zhu ◽  
Jinxin Zheng ◽  
Ying Xie ◽  
...  

Abstract Proteasome inhibitors, such as bortezomib (BTZ), represent the key elements in chemotherapy regimens for multiple myeloma (MM), whereas acquired chemoresistance and ultimately relapse remain a major obstacle. In the current study, we screened differently expressed cytokines in bortezomib-resistant MM cells and found that Dickkopf-1 (DKK1) level was remarkably augmented, whereas CD138 level was significantly suppressed. DKK1 in vitro specifically enhanced the resistance of myeloma cells to bortezomib treatment, and excessive DKK1 drove CD138 downregulation via inhibition of canonical Wnt signaling. Notably, DKK1 mainly induced drug resistance in MM cells via the receptor of CKAP4. Mechanistically, CKAP4 transduced DKK1 signal and evoked NF-κB pathway through recruiting and preventing cullin associated and neddylation dissociated 1 from hampering the assembly of E3 ligase-mediated ubiquitination of IκBα. In addition, we found that interleukin-6 (IL-6) stimulated CKAP4 expression to generate drug resistance, and disturbance of DKK1-CKAP4 axis improved sensitivity to BTZ treatment of MM and attenuated bone destruction in a mouse model. Collectively, our study revealed the previously unidentified role of DKK1 in myeloma drug resistance via Wnt signaling dependent and independent manners, and clarified the importance of antagonism of DKK1-IL-6 loop in bone marrow microenvironment.


2020 ◽  
Vol 16 (2) ◽  
pp. 56-66 ◽  
Author(s):  
Ricardo D. Parrondo ◽  
Sikander Ailawadhi ◽  
Taimur Sher ◽  
Asher A. Chanan-Khan ◽  
Vivek Roy

Despite the evolution of the therapeutic arsenal for the treatment of multiple myeloma (MM) over the past decade, autologous stem-cell transplantation (ASCT) remains an integral part of the treatment of patients with both newly diagnosed and relapsed MM. The advent of novel therapies, such as immunomodulatory agents, proteasome inhibitors, and monoclonal antibodies, has led to unprecedented levels of deep hematologic responses. Nonetheless, studies show that ASCT has an additive effect leading to additional deepening of responses. As the therapeutic agents for MM continue to evolve, the timing, duration, and sequence of their use in combination with ASCT will be crucial to understand to obtain the deepest response and survival benefit for patients with MM. This review aims to discuss the role of ASCT for the management of MM, with a particular focus on the role of ASCT in the context of novel therapies and minimal residual disease.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e20535-e20535
Author(s):  
Zahoor Ahmed ◽  
Shaha Nabeel ◽  
Arafat Ali Farooqui ◽  
Hassan Imtiaz ◽  
Aqsa Ashraf ◽  
...  

e20535 Background: In multiple myeloma (MM), translocation t(11;14) has shown higher expression of B Cell Lymphoma 2 protein (BCL2)- a target for Venetoclax (VEN). This review highlights the role of precision therapy with VEN in t(11;14) MM. Methods: A systematic search of PubMed, Cochrane, Web of Science and Clinicaltrials.gov was performed for use of VEN in MM from inception to 1/2/20. 5 out of 183 studies were finalized (N = 512). Results: Out of 500 relapsed refractory (R/R) MM patients, 97 had t(11;14) and 168 had high BCL2. VEN as monotherapy had encouraging responses in t(11;14) MM patients with high BCL2:BCL2L1 (Kumar 2017). VEN when combined with proteasome inhibitors (PIs) achieved promising results. VEN achieved superior results with carfilzomib and dexamethasone (d) (ORR 100%) in t(11;14) MM patients (Costa 2018) as compared to bortezomib (B) and d (ORR 94%) (Moreau 2017). With high BCL2, VEN-Bd achieved ORR of 84% (CR 35%, VGPR 73%) versus placebo (ORR 83%; VGPR 33%) (Bellini 2019). Conclusions: Venetoclax achieved superior responses in RRMM pts with t(11;14) and high BCL2 expression. Further studies are warranted. [Table: see text]


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 276-276
Author(s):  
Michele Cea ◽  
Antonia Cagnetta ◽  
Mariateresa Fulciniti ◽  
Yu-Tzu Tai ◽  
Chirag Acharya ◽  
...  

Abstract Background Deregulation of the DNA damage response (DDR) signaling machinery underlies genomic instability, leading to cancer development and clonal evolution. Multiple Myeloma (MM) remains an incurable disease characterized by a highly unstable genome, with aneuploidy observed in nearly all patients. The mechanism causing this karyotypic instability is largely unknown, but recent observations have correlated these abnormalities with dysfunctional DDR machinery. Mammalian NAD+-dependent deacetylase sirtuin-6 (SIRT6) is emerging as new protein involved in multiple pathways, including maintenance of genome integrity. Methods A panel of 18 MM cell lines, both sensitive and resistant to conventional and novel anti-MM therapies, was used in this study. Blood and BM samples from healthy volunteers and MM patients were obtained after informed consent and mononuclear cells (MNCs) separated by Ficoll-Paque density sedimentation. Patient MM cells were isolated from BM MNCs by CD138-positive selection. Lentiviral delivery was used for expression and knock-down of SIRT6 in MM cell lines. The biologic impact of SIRT6 phenotype was evaluated using cell growth, viability and apoptosis assays. DNA Double-Strand Breaks (DSB) repair occurring via homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways was assessed using a transient direct repeat (DR)-GFP/I-SceI system. Results A comparative gene expression analysis of 414 newly-diagnosed uniformly-treated MM patients showed high levels of SIRT6 mRNA in MM patients versus MGUS or normal donors; moreover, in active MM elevated SIRT6 expression correlated with adverse clinical outcome. Due to its prognostic significance, we further evaluated its role in MM biology. We found higher SIRT6 nuclear expression in MM cell lines and primary cells compared to PBMCs from healthy donors. Targeting SIRT6 by specific shRNA increased MM cell survival by reducing DNA repair efficiency (HR and NHEJ). Whole genome profiling of three different SIRT6 knockout (Sirt6-/-) MM cell lines identified a restricted effect of SIRT6 silencing on transcription of DNA damage genes, which also represented the most down-regulated genes. Consistent with these data, GSEA algorithm revealed that gene set regulating DNA repair were prominently enriched in SIRT6 depleted cells (p<0.0001 and FDR=0.003), confirming the role of SIRT6 in this pathway. We next examined the therapeutic relevance of SIRT6 inhibition in MM by evaluating the effect of SIRT6 depletion on cytotoxicity induced by genotoxic agents. SIRT6 shRNA impaired DNA DSB repair pathways triggered by DNA damaging agents, thereby enhancing overall anti-MM activity of these agents. Finally, in concert with our in vitro data, studies using our human MM xenograft model confirmed that SIRT6 depletion enhanced anti-MM activity of DNA-damaging agents. Conclusion Collectively, our data provide basis for targeting SIRT6 as a novel therapeutic strategy in combination with genotoxic agents to enhance cytotoxicity and improve patient outcome in MM. Disclosures: Tai: Onyx: Consultancy. Hideshima:Acetylon Pharmaceuticals: Consultancy. Chauhan:Vivolux: Consultancy. Anderson:celgene: Consultancy; onyx: Consultancy; gilead: Consultancy; sanofi aventis: Consultancy; oncopep: Equity Ownership; acetylon: Equity Ownership.


2019 ◽  
Vol 10 ◽  
pp. 204062071989487 ◽  
Author(s):  
Nadine Abdallah ◽  
Shaji K. Kumar

The treatment of multiple myeloma has evolved markedly in the last decade, but mortality remains high, emphasizing the need for more effective therapies. Daratumumab, a fully human monoclonal antibody targeting CD38, has shown clinical efficacy in relapsed/refractory multiple myeloma both as monotherapy and in combination with other drugs, including novel agents. More recently, promising results have been reported in patients with untreated newly diagnosed multiple myeloma (NDMM). Clinical trials thus far have shown enhanced efficacy and tolerability of several daratumumab-based combinations in both transplant ineligible and eligible patients, without compromising transplant ability. However, benefit in high-risk subpopulations is still unclear. A subcutaneous formulation of daratumumab has been introduced to decrease the risk of infusion reactions, with preliminary results showing non-inferior efficacy. The antimyeloma activity of daratumumab is achieved through multiple mechanisms including direct, Fc-dependent, and immunomodulatory mechanisms. Enhanced efficacy of daratumumab in combination with immunomodulatory drugs and proteasome inhibitors is supported by preclinical data showing synergism. This review will focus on the role of daratumumab in untreated NDMM patients, highlighting the results of major clinical trials, and listing ongoing trials that are evaluating various daratumumab-based combinations in this setting.


Author(s):  
Pawel Robak ◽  
J.; Szemraj ◽  
D.; Mikulski ◽  
I.; Drozdz ◽  
K; Juszczak ◽  
...  

While multiple myeloma (MM) treatment with proteasome inhibitors and other agents yields encouraging results, primary and secondary resistance remains an emerging problem. An important factor in such treatment resistance is the overexpression of several proteins. The present study comprehensively evaluates the expression of POMP, PSMB5, NRF2, XBP1, cMAF and MAFb proteins in plasma cells isolated from the bone marrow of 39 MM patients treated with bortezomib-based regimens using enzyme-linked immunosorbent assay (ELISA). The proteins were selected on the basis of previous laboratory and clinical studies in bortezomib treated MM patients. It was found that the expression of the investigated proteins did not significantly differ between bortezomib-sensitive and bortezomib-refractory patients. However, the expression of some proteins correlated with overall survival (OS); this was significantly shorter in patients with higher POMP expression (HR 2.8, 95% CI: 1.1-7.0, p = 0.0277) and longer in those with higher MAFB expression (HR 0.32, 95% CI: 0.13-0.80, p = 0.0147). Our results indicate that high expression of POMP and MAFB in MM plasma cells may serve as predictors of OS in MM patients treated with bortezomib-based regimens. However, further studies are needed to determine the role of these factors in effective strategies for improving anti-myeloma therapy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2055-2055
Author(s):  
Raphael Szalat ◽  
Matija Dreze ◽  
Mehmet Kemal Samur ◽  
Anne S. Calkins ◽  
Giovanni Parmigiani ◽  
...  

Abstract Introduction Multiple Myeloma (MM) is a heterogeneous disease characterized by genomic instability and eventual poor outcome. Aberrations in DNA repair-related pathways have been considered to explain the instability. Nucleotide excision repair (NER) is an important pathway involved in the removal of bulky adducts and DNA crosslinks induced by various genotoxins. Little is known about the relationship between NER in MM biology and patient outcomes. Here we assess the role of NER in MM. Methods We evaluated NER efficiency in a panel of MM cell lines (n=18), with a functional assay based on the purified DNA-Damage Binding protein 2 (DDB2) complex (DDB2 proteo-probe, Dreze et al. 2014). NER proficiency was correlated with cytogenetic characteristics, p53 status, sequencing data, gene expression profile, and with melphalan (MLP) sensitivity evaluated by CellTiterGlo (CTG). We then evaluated NER efficiency in patient samples and interrogated the role of NER in MM patients by correlating expression of NER genes with survival (OS) in a cohort of 170 patients (IFM 2005-01) homogeneously treated with alkylating agents. Results NER, measured as the amount of (6-4) photoproducts remaining 2 hours after UV irradiation, showed variability between MM cell lines. Out of 18 cell lines, 7 exhibited various levels of NER deficiencies, defined as less than 90% repair at 2 hours (4 cell lines 90-70% and 3 cell lines <60%). The other 11 cell lines presented more than 90% of repair. P53 loss of function did not associate with NER deficiency. Notably, all t(4;14) cell lines tested (n=5) showed a NER repair rate > 90%. NER deficient cell lines (NER <90%) were sensitive to melphalan. However all melphalan sensitive cells did not exhibit NER deficiency, This suggests that other DNA repair pathways are involved in the repair of melphalan-induced lesions. Furthermore, we performed the assay in patient samples showing variable levels of NER, which may reflect different disease status and prognosis. Whole genome sequencing data from 6 NER deficient cell lines revealed missense mutations in critical NER genes in 2 of these cell lines. MM1S and MM1R cells showed mutations in the Xeroderma Pigmentosum Complementation Group A (XPA) gene (mutation D70H), and MM1R was also mutated in the Cockayne syndrome, ERCC6 gene (mutation L682I). Gene expression profile comparison in 12 of these showed a positive correlation between expression of NER genes and NER efficiency. We next studied expression of 20 NER genes in 170 patients treated with high dose melphalan (IFM 2005-01). The analysis revealed a significant negative correlation between 5 overexpressed NER genes (ERCC3, ERCC4, ERCC6, MMS19 and NTHL1) and overall survival (OS). Conclusion NER efficiency is heterogeneous in MM, in part due to acquired mutations. Impairment of NER is associated with outcome as well as may contribute to genomic instability. Ability to proficiently measure NER in patient samples provides us an opportunity to now evaluate NER as a prognostic marker in myeloma. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document