scholarly journals Comparison and Evaluation of Different Radiotherapy Techniques Using Biodosimetry Based on Cytogenetics

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 146
Author(s):  
Aggeliki Nikolakopoulou ◽  
Vasiliki Peppa ◽  
Antigoni Alexiou ◽  
George Pissakas ◽  
Georgia Terzoudi ◽  
...  

While rapid technological advances in radiotherapy techniques have led to a more precise delivery of radiation dose and to a decreased risk of side effects, there is still a need to evaluate the efficacy of the new techniques estimating the biological dose and to investigate the radiobiological impact of the protracted radiotherapy treatment duration. The aim of this study is to compare, at a cytogenetic level, advanced radiotherapy techniques VMAT and IMRT with the conventional 3D-CRT, using biological dosimetry. A dicentric biodosimetry assay based on the frequency of dicentrics chromosomes scored in peripheral blood lymphocytes from prostate cancer patients and PC3 human prostate cancer cell line was used. For each patient blood sample and each subpopulation of the cultured cell line, three different irradiations were performed using the 3D-CRT, IMRT, and VMAT technique. The absorbed dose was estimated with the biodosimetry method based on the induced dicentric chromosomes. The results showed a statistically significant underestimation of the biological absorbed dose of ~6% for the IMRT and VMAT compared to 3D-CRT irradiations for peripheral blood lymphocytes, whereas IMRT and VMAT results were comparable without a statistically significant difference, although slightly lower values were observed for VMAT compared to IMRT irradiation. Similar results were obtained using the PC3 cell line. The observed biological dose underestimation could be associated with the relative decreased dose rate and increase irradiation time met in modulated techniques compared to the conventional 3D-CRT irradiations.

Neurosurgery ◽  
1991 ◽  
Vol 28 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Kevin O. Lillehei ◽  
Dawn H. Mitchell ◽  
Stephen D. Johnson ◽  
Larry E. McCleary ◽  
Carol A. Kruse

Abstract Between August 1986 and October 1987, the Denver Brain Tumor Research Group conducted a clinical trial using autologous human recombinant interleukin-2 (rIL-2)-activated lymphocytes to treat 20 patients with recurrent high-grade gliomas. The trial involved surgical resection and/or decompression followed by intracavitary implantation of lymphokine-activated killer (LAK) cells and autologous stimulated lymphocytes (ASL) along with rIL-2 in a plasma clot. One month later, stimulated lymphocytes and rIL-2 were infused through a Rickham reservoir attached to a catheter directed into the tumor bed. The LAK cells were rIL-2-activated peripheral blood lymphocytes cultured for 4 days; the ASL were lectin- and rIL-2-activated peripheral blood lymphocytes cultured for 10 days. Of the 20 patients treated, 11 were evaluated as a group (mean age, 44 years, range, 15-61 years; mean Karnofsky rating, 69, range, 50-100; mean Decadron dose at entry, 14 mg/d. range, 0-32). The average number of lymphocytes implanted was 7.6 × 109 (range, 1.9-27.5 × 109), together with 1 to 4 × 106 U of rIL-2. To date, 10 of the 11 patients died, all from recurrent tumor growth. The median overall survival time was 63 weeks (range, 36-201; mean, 86). The median survival time after immunotherapy was 18 weeks (range, 11-151; mean, 39). No significant difference in survival after immunotherapy was found between those patients who had received previous chemotherapy and those who had not. The use of steroids or prior chemotherapy did not influence the in vitro generation of ASL or LAK cells. Prior chemotherapy did correlate, however, with diminished in vitro cytotoxicity against the natural killer-sensitive (K562) target cell by LAK cells (P < 0.05) but not that by ASL. There were no major adverse side effects. Although adoptive immunotherapy was safe and well tolerated, its therapeutic potential remains in question.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Jayakrishna Tippabathani ◽  
Jayshree Nellore ◽  
Vaishnavie Radhakrishnan ◽  
Somashree Banik ◽  
Sonia Kapoor

Here, we study the expression of NURR1 and FOXA1 mRNA in peripheral blood lymphocytes and its haplotypes in coding region in a small Chennai population of India. Thirty cases of Parkinson’s patients (PD) with anti-PD medications (20 males aged65.85±1.19and 10 females aged65.7±1.202) and 30 age matched healthy people (20 males aged68.45±1.282and 10 females aged65.8±1.133) were included. The expression of NURR1 and FOXA1 in PBL was detected by Q-PCR and haplotypes were identified by PCR-SSCP. In the 30 PD cases examined, NURR1 and FOXA1 expression was significantly reduced in both male and female PD patients. However, NURR1 (57.631% reduced in males; 28.93% in females) and FOXA1 (64.42% in males; 55.76% in females) mRNA expression did differ greatly between male and female PD patients. Polymorphisms were identified at exon 4 of the NURR1 and at exon 3 of the FOXA1, respectively, in both male and female patients. A near significant difference in SSCP patterns between genders of control and PD population was analyzed suggesting that further investigations of more patients, more molecular markers, and coding regions should be performed. Such studies could potentially reveal peripheral molecular marker of early PD and different significance to the respective genders.


2013 ◽  
Vol 03 (03) ◽  
pp. 038-041
Author(s):  
Shobha S. Shetty ◽  
Hrishikesh Nachane

Abstract Background: Smoking has been shown to have a positive effect on DNA damage in almost all the cells of the body. Quantitative analysis of this damage will help in assessing the etiopathogenesis of various nicotine induced damage to the body. Comet assay has been an emerging tool in this regard and hence was applied by us to estimate the severity of DNA damage in smokers. Aims & Objectives: To evaluate the DNA genotoxicity in peripheral blood lymphocytes in smokers and their comparison with non smokers & assess the quantitative damage. Materials and methods: 30 smokers & 20 non smokers were recruited & their peripheral blood was taken for the comet assay to look for Olive moment & Tail moment to quantitatively assess the DNA damage due to cigarette smoking. Results: In our study there was no significant difference in the analysis of DNA damage (with regard to tail moment & olive moment) in smokers versus non smokers (P value: more than 0.05). Conclusions: Though smoking is known to cause DNA damage, we did not find significant differences between the two groups probably due to other multifactorial etiologies for genotoxicity.


2019 ◽  
Vol 56 (2) ◽  
pp. 155-159 ◽  
Author(s):  
Mohammad SHOKRZADEH ◽  
Abbas MOHAMMADPOUR ◽  
Mona MODANLOO ◽  
Melika HASSANI ◽  
Nasrin Ghassemi BARGHI ◽  
...  

ABSTRACT BACKGROUND: Gastric cancer is known as the fourth most common cancer. Current treatments for cancer have damaged the sensitive tissues of the healthy body, and in many cases, cancer will be recurrent. Therefore, need for treatments that are more effective is well felt. Researchers have recently shifted their attention towards antipsychotic dopamine antagonists to treat cancer. The anticancer activities of aripiprazole remain unknown. OBJECTIVE: This study aimed to evaluate the efficacy and safety of aripiprazole on gastric cancer and normal cell lines. METHODS: In this regard, the cytotoxicity and genotoxicity of aripiprazole were investigated in MKN45 and NIH3T3 cell lines by methyl tetrazolium assay and on peripheral blood lymphocytes by micronucleus assay. For this purpose, cells were cultured in 96 wells plate. Stock solutions of aripiprazole and cisplatin were prepared. After cell incubation with different concentrations of aripiprazole (1, 10, 25, 50, 100 and 200 μL), methyl tetrazolium solution was added. For micronucleus assay fresh blood was added to RPMI culture medium 1640 supplemented, and different concentrations of aripiprazole (50, 100 and 200 μL) were added. RESULTS: The finding of present study showed that the IC50 of aripiprazole in the cancer cell line (21.36 μg/mL) was lower than that in the normal cell line (54.17 μg/mL). Moreover, the micronucleus assay showed that the frequency of micronuclei of aripiprazole at concentrations below 200 μM was much less than cisplatin. CONCLUSION: Aripiprazole can be a good cytotoxic compound and good candidate for further studies of cancer therapy.


2016 ◽  
Vol 58 (2) ◽  
pp. 225-231 ◽  
Author(s):  
Masanori Someya ◽  
Tomokazu Hasegawa ◽  
Masakazu Hori ◽  
Yoshihisa Matsumoto ◽  
Kensei Nakata ◽  
...  

Abstract Repair of DNA damage is critical for genomic stability, and DNA-dependent protein kinase (DNA-PK) has an important role in repairing double-strand breaks. We examined whether the DNA-PK activity of peripheral blood lymphocytes (PBLs) was related to biochemical (prostate-specific antigen: PSA) relapse and radiation toxicity in prostate cancer patients who have received radiotherapy. A total of 69 patients with localized adenocarcinoma of the prostate participated in this study. Peripheral blood was collected 2 years or later after radiotherapy and centrifuged, then DNA-PK activity was measured by a filter binding assay. The high DNA-PK activity group had a significantly higher PSA relapse–free survival rate than the low DNA-PK activity group. The 10-year PSA relapse–free survival was 87.0% in the high DNA-PK activity group, whereas it was 52.7% in the low DNA-PK activity group. Multivariate analysis showed the Gleason score and the level of DNA-PK activity were significant predictors of PSA relapse after radiotherapy. In addition, the low DNA-PK activity group tended to have a higher incidence of Grade 1–2 urinary toxicity than the high DNA-PK activity group. Prostate cancer patients with low DNA-PK activity had a higher rate of PSA relapse and a higher incidence of urinary toxicity. DNA-PK activity in PBLs might be a useful marker for predicting PSA relapse and urinary toxicity, possibly contributing to personalized treatment of prostate cancer.


Blood ◽  
1983 ◽  
Vol 62 (5) ◽  
pp. 1041-1046
Author(s):  
HR Gutmann ◽  
YM Chow ◽  
RL Vessella ◽  
B Schuetzle ◽  
ME Kaplan

This study examines whether the activity of the Mg2+-dependent ecto- ATPase of the surface membrane of the human lymphocyte is changed in chronic lymphocytic B-cell leukemia (CLL-B) and may be an indicator of malignant transformation. The ecto-ATPase activities of preparations consisting predominantly of T or B cells were compared to each other and to the ecto-ATPase of the CLL peripheral blood lymphocytes (PBL). The specific activities and kinetic constants of the ecto-ATPase of the cell preparations were determined with [gamma-32P] adenosine triphosphate (ATP) as substrate. B-enriched lymphocytes had nearly fourfold greater specific activity and apparent Vmax than T-enriched lymphocytes, while the Km values of both cell types showed no significant difference. The specific activities and kinetic constants of the ecto-ATPase of the CLL PBL were significantly higher than the corresponding values of PBL or of B-enriched lymphocytes. Judging from the kinetic constants the ecto-ATPase of the CLL-B lymphocyte appears to be an enzyme that is distinctly different from that of the normal B cell. On the basis of the kinetic properties, the ecto-ATPase of the B cell appears to be identical with that of the T cell. The differences in the maximal velocities of the hydrolysis of ATP by B and T cells are likely due to a greater number of enzymatic sites on the B cell.


2021 ◽  
Vol 8 (1) ◽  
pp. 105-113
Author(s):  
Darlina Yusuf ◽  
Devita Tetriana ◽  
Tur Rahardjo ◽  
Teja Kisnanto ◽  
Yanti Lusiyanti ◽  
...  

Analyses of DNA Damage in the Patient’s Lymphocyte Cells Post-Radiotherapy Radiotherapy given in high doses to kill cancer cells can also induce DNA damage in surrounding normal cells. The radiation dose is divided into smaller doses called fractionation to decrease the effect of radiation on normal tissue. For this reason, it is necessary to monitor the peripheral blood lymphocytes to evaluate the patient's DNA damage. The alkaline comet test is a simple and sensitive technique for detecting DNA instability. This study involved 11 patients who underwent radiotherapy up to 20 Gy, and 11 healthy subjects as controls. This study aims to see how much DNA damage is caused by a 20 Gy fractionated radiation dose in patients with various cancers. The results showed that the mean frequency of damaged cells in patients was 80.54 ± 12.52% with a mean comet tail length of 49.98 ± 12.93 µm. There was a significant difference in both the frequency of damaged cells and the mean value of the comet tail length against the control group (p < 0.001). It was concluded that high doses of radiation can cause DNA damage to peripheral blood lymphocytes. Radioterapi yang diberikan dalam dosis tinggi untuk mematikan sel kanker juga dapat menginduksi kerusakan DNA pada sel normal di sekitarnya. Dosis radiasi dibagi menjadi dosis yang lebih kecil yang disebut fraksinasi untuk menurunkan efek radiasi pada jaringan normal. Untuk itu perlu pemantauan pada limfosit darah tepi untuk mengevaluasi kerusakan DNA pasien. Uji komet alkali merupakan teknik yang sederhana dan sensitif untuk mendeteksi ketidakstabilan DNA. Penelitian ini melibatkan 11 pasien yang menjalani radioterapi hingga 20 Gy, dan 11 subyek sehat sebagai kontrol. Penelitian ini bertujuan untuk melihat seberapa besar kerusakan DNA akibat dosis radiasi fraksinasi 20 Gy pada pasien dengan variasi kanker. Hasil penelitian menunjukkan bahwa rerata frekuensi sel yang rusak pada pasien 80,54 ± 12,52% dengan rerata panjang ekor komet 49,98 ± 12,93 µm terdapat perbedaan nyata baik pada frekuensi sel yang rusak maupun nilai rerata panjang ekor komet terhadap kelompok kontrol (p < 0,001). Penelitian ini menyimpulkan bahwa radiasi dosis tinggi dapat menyebabkan kerusakan DNA sel limfosit darah tepi.


2020 ◽  
Vol 11 (1) ◽  
pp. 8121-8128

P2 receptors have been found in several blood cells and their progenitors. However, most studies lack data about receptor subtypes and of receptors expression time in the process of cell differentiation. The aim of our study was to identify the subtypes of P2Y and P2X receptors on human CD34+ cells, c-kit+ cells, monocytes, lymphocytes of cord and peripheral blood. Expression of P2Y1, P2Y4, and P2Y6 receptors was the uniform in the cord and peripheral blood of all studied cells with the prevalence of monocytes expressing P2Y-receptors (up to 71%). At the same time, a significant difference was found between cells of cord and peripheral blood expressing subtypes of P2X2, P2X3, P2X4, P2X5, P2X6, P2X7 receptors. Cord blood lymphocytes contained a higher percentage of P2X receptors than peripheral blood lymphocytes. Similarly, the percentage of the peripheral blood monocytes, containing P2X receptors was significantly higher than the monocytes of cord blood.


Sign in / Sign up

Export Citation Format

Share Document