scholarly journals Systematic Incorporation of Gold Nanoparticles onto Mesoporous Titanium Oxide Particles for Green Catalysts

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 451
Author(s):  
Jian Hou ◽  
Wongi Jang ◽  
Jaehan Yun ◽  
Franklin O. Egemole ◽  
Dianguo Geng ◽  
...  

This report describes the systematic incorporation of gold nanoparticles (AuNPs) onto mesoporous TiO2 (MPT) particles without strong attractive forces to efficiently serve as reactive and recyclable catalysts in the homocoupling of arylboronic acid in green reaction conditions. Unlike using nonporous TiO2 particles and conventional SiO2 particles as supporting materials, the employment of MPT particles significantly improves the loading efficiency of AuNPs. The incorporated AuNPs are less than 10 nm in diameter, regardless of the amount of applied gold ions, and their surfaces, free from any modifiers, act as highly reactive catalytic sites to notably improve the yields in the homocoupling reaction. The overall physical properties of the AuNPs integrated onto the MPT particles are thoroughly examined as functions of the gold content, and their catalytic functions, including the rate of reaction, activation energy, and recyclability, are also evaluated. While the rate of reaction slightly increases with the improved loading efficiency of AuNPs, the apparent activation energies do not clearly show any correlation with the size or distribution of the AuNPs under our reaction conditions. Understanding the formation of these types of composite particles and their catalytic functions could lead to the development of highly practical, quasi-homogeneous catalysts in environmentally friendly reaction conditions.

2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Qiaole Li ◽  
Yanhong Li ◽  
Haoran Niu

Enzyme engineering is an important part of modern biotechnology. Due to its high reaction specificity, high efficiency, mild reaction conditions, and low pollution, it is also an important method widely used in the pharmaceutical field. The application of enzymes in medicine is diverse, such as: diagnosis, prevention and treatment of diseases with enzymes, manufacture of various drugs with enzymes, etc., mainly through manual operations, to obtain enzymes required by the pharmaceutical industry, and through various means Enzymes perform their catalytic functions. This article mainly introduces the application of enzyme engineering in the pharmaceutical field, and also prospects the development trend of enzyme engineering in the pharmaceutical field.


Chemosphere ◽  
2020 ◽  
Vol 256 ◽  
pp. 127083 ◽  
Author(s):  
Jiangfan He ◽  
Cui Lai ◽  
Lei Qin ◽  
Bisheng Li ◽  
Shiyu Liu ◽  
...  

1960 ◽  
Vol 33 (3) ◽  
pp. 696-698
Author(s):  
S. E. Bresler ◽  
M. I. Mosevitskiĭ

Abstract For the study of the mechanism of polymerization by means of complexes of aluminum organic compounds with titanium chlorides, data on the kinetics of polymerization is of great interest. Up to the present time, the rate of polymerization of propylene has been studied but the interpretation of the kinetic data is difficult because the polymer, which is practically insoluble in the reaction medium, entraps the catalyst resulting in a rate of reaction which is dependent on the diffusion of monomer through the polymer to the active sites. In this work the polymerization of isoprene, which yields polymers soluble in the monomer, in saturated hydrocarbons and in benzene, was studied. The rate of the polymerization reaction was measured by the thermal effect in a calorimeter consisting of a 3.5 1. Dewar flask, with a lid, immersed in a thermostated air bath maintained at approximately the temperature of the reaction. Low viscosity spindle oil, heated to the temperature of the reaction (about 32°), served as the calorimeter fluid. The ampoule holder extended outside of the calorimeter and was connected to a shaking apparatus. The ampoule was divided by a thin partition into two sections each holding 45–50 cc. Into one section previously purified monomers and solvent were distilled. The other section was filled with catalyst components from a Shlenk container. The change in temperature of the calorimeter was determined with a Beckman thermometer with an accuracy of 0.01 °. When the temperature of the calorimeter containing the ampoule remained constant to within 0.01–0.02° for 30–40 minutes, the shaking apparatus was connected and the partition was broken with a striker. Intensive shaking was continued during the entire experiment resulting in mixing of the reaction mixture and of the calorimeter fluid. The rate of reaction was determined by the rate of heat evolution ; in other words, by the temperature rise in the calorimeter. For a rise of 0.1–0.5° the reaction conditions remained practically isothermal. This rise permits the kinetics of the reaction to be observed with sufficient accuracy. Adiabaticity of the calorimeter and the effect of mechanical heat were controlled in separate experiments.


2020 ◽  
Vol 12 (8) ◽  
pp. 1109-1115
Author(s):  
Xiaojiao Yang ◽  
Jun Li ◽  
Ying Liu

One-dimensional gold nanofibers are good candidates for next generation nanoelectronic devices. Here, gold nanofibers were synthesized via electrospinning with subsequent in-situ thermal reduction. The thermal behavior of the precursor nanofibers was investigated by thermogravimetric/differential thermal analysis and fourier transform infrared. The polymer parts are decomposed and removed step by step, meanwhile, gold salt is decomposed and in-situ reduced to form gold nanoparticles in air without any reducing agent or gas due to its strong oxidation ability. The effects of gold content, polymers type (PVP, PVA, PAN), calcination atmospheres (Air, H2, H2/Ar) and temperatures (200 °C to 500 °C) on the morphology and structures of gold nanofibers were characterized by XRD, SEM, and TEM. The results shows that PVP is the optimal polymer with the gold content of 6:1 (PVP:Au) to fabricate the continuous gold nanofibers with good morphology and structures. The final gold nanofibers with average diameter of 60 nm and several hundred micrometers long, were fabricated after calcined at 500 °C in air for 2 hours. It was composed of gold nanoparticles that ranged from 5 to 30 nm.


2013 ◽  
Vol 661 ◽  
pp. 47-52
Author(s):  
Gang Chen ◽  
Chun Hua Yang

Gold nanoparticles (AuNPs) were attached to the surface of alumina particles by an in-situ immobilizing method. SEM and XPS analysis showed that the coverage of alumina particles by AuNPs increased as the amount of alumina decreased; AuNPs onto alumina particles by the conventional colloidal deposition method were also prepared, whose TEM showed that the coverage of AuNPs was evidently smaller than that in the case of modified colloidal deposition method,although the AuNPs were spread almost uniformly over the surface of alumina particles. Au-immobilized alumina particles were subsequently utilized as the catalysts for direct amination of benzene with NH3H2O as an aminating agent and H2O2 as an oxidant under mild conditions. The reaction conditions were optimized: when catalyst amount was 2.0 g, reaction temperature was 50 °C, NH3H2O amount was 60 mL, H2O2 amount was 30 mL, and reaction time is 2 h, Au-immobilized alumina particles showed the highest aniline yield (1.96 mg) for 25 mL benzene.


2008 ◽  
Vol 8 (9) ◽  
pp. 4415-4423 ◽  
Author(s):  
Lanlan Sun ◽  
Yonghai Song ◽  
Li Wang ◽  
Yujing Sun ◽  
Cunlan Guo ◽  
...  

The interaction between HAuCl4 and DNA has enabled creation of DNA-templated gold nanoparticles without formation of large nanoparticles. It was found that spheral DNA-HAuCl4 hybrid of 8.7nm in diameter, flower-like DNA-HAuCl4 hybrid, nanoparticles chains and nanoparticles network of DNA-HAuCl4 hybrid could be obtained by varying the reaction conditions, including DNA concentration and reaction temperature. The intermediate product was investigated by shortening the reaction time of DNA and HAuCl4, and the obtained nanoparticles preserved a small DNA segment, which indicated that the reaction between DNA and HAuCl4 had a process. The addition of reduction reagent resulted in DNA-templated gold nanoparticles and nanoflowers, respectively. UV-vis absorption spectra were used to characterize the DNA-HAuCl4 hybrid and the gold nanostructures templated on DNA, and XPS spectra were used to compare the composition of DNA-Au(III) complex and gold nanoparticles. AFM and TEM results revealed that the spheral gold nanoparticles of about 11 nm in size and flower-like gold nanoparticles were formed after the addition of NaBH4.


Author(s):  
Hiroki Miura ◽  
Tomoya Toyomasu ◽  
Hidenori Nishio ◽  
Tetsuya Shishido

Gold-catalyzed thioetherification of C(sp3)–O bonds is described. The reaction of allyl phosphates and thiosilanes in the presence of gold nanoparticles supported on ZrO2 proceeded efficiently under mild reaction conditions to...


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Christopher J. Ward ◽  
Robert Tronndorf ◽  
Alicia S. Eustes ◽  
Maria L. Auad ◽  
Edward W. Davis

The effects of the seed reaction conditions on the two-step seed-mediated growth of gold nanorods and the effect of gold and reducing agent content in the growth solution were evaluated. Results indicate that the reaction conditions used to produce the seeds have a significant impact on the aspect ratio of the gold nanorods produced. Increasing the concentration of gold or the reaction temperature in the seed production step results in lower length to diameter (aspect ratio) gold rods. In addition, the amount of prepared seed added to the growth solution impacts the rod aspect ratio, with increasing amounts of seed reducing the aspect ratio. The effects of reducing agent, ascorbic acid (AA), and gold content of the growth solution on the aspect ratio of the produced rods are strongly interrelated. There exists a minimum ascorbic acid to gold concentration below which rods will not form; however, increasing the ratio above this minimum results in shorter rods being formed. Characterization of nanorod growth is performed by UV-vis-NIR spectrophotometry and transmission electron microscopy (TEM).


2021 ◽  
Author(s):  
◽  
Thomas Wade Nilsson

<p>Gold nanoparticles are known for their remarkable optical properties; they exhibit localised surface plasmon resonance bands in the visible region of the electromagnetic spectrum. This has led to their use as luxury dyes for the colouring of wool fibres. Gold is associated with wealth and desire, and as such, gold nanoparticle-wool fibre composites may be fabricated into high-quality garments, apparel, textiles and carpets for international markets.  Novel proprietary approaches for the laboratory-scale synthesis of gold nanoparticle-wool fibre composites have previously been developed by Professor James Johnston and Dr Kerstin Lucas. The innovative nanotechnology utilises the affinity of gold for sulfur-containing cystine residues in wool fibres, to attract and bind the gold nanoparticles. One approach involves the absorption of gold ions by wool fibres and the nucleation of gold nanoparticles in-situ. In an alternative method, gold nanoparticle colloids are synthesised ex-situ, and are then used to colour wool fibres.  The reaction conditions of the in-situ and ex-situ approaches were optimised with respect to cost-effectiveness and scalability. The gold content of the in-situ composites was minimised, and the range of possible colours widened, via the use of heat and external reducing agents. In the ex-situ process, the formation and stability of the gold nanoparticle colloids was studied, and the reaction conditions of the synthesis were optimised. The rate of uptake of gold nanoparticles to wool was controlled by manipulating the pH, concentration, volume, and wool to liquor ratio of the gold colloids, and by introducing auxiliary agents into the dyeing reactions. A range of chemical treatments and alternative stabilising agents were investigated to improve the washfastness properties of ex-situ gold nanoparticle-wool fibre composites.  There are numerous size-controllable syntheses of gold nanoparticle colloids at the laboratory-scale. However, when the process is scaled-up, gold nanoparticle synthesis is no longer trivial. A barrel reactor with a high velocity mixer was utilised to achieve uniform mixing and heating in the synthesis of gold nanoparticle colloids of up to 90 L in volume. The ratios of gold to stabilising agents in the colloidal gold syntheses were optimised to result in more stable and reproducible gold colloids for subsequent dyeing reactions.  The uniform colouring of small quantities of wool is easily achieved in the laboratory, but preventing colour variation across a kilogram of wool is a significant challenge. Initial kilogram-scale dyeing reactions in static tank reactors resulted in unevenly coloured gold nanoparticle-wool fibre composites. To overcome this, conventional hank dyeing equipment was used to colour felted merino yarn, in collaboration with the wool dyeing industry. Modified hank dyeing procedures were recreated in the laboratory, and composites with remarkable colour uniformity were produced. Industrial package dyeing reactors were then used to colour fine merino yarn with gold nanoparticle colloids. The uptake of gold nanoparticles was controlled by manipulating the owrates, ow direction and amounts of auxiliary agents that were employed in the dyeing reactions.  Based upon the success of the industrial dyeing reactions, novel dyeing reactors were developed for the colouring of hanks of wool fibres and yarns in the laboratory. These reactors utilised rapid dye circulation and pressure to produce gold nanoparticle-wool fibre composites with remarkable colour uniformity. The composites were used to fabricate luxury apparel and carpets for international trade expositions.  The pathway from synthesis in the laboratory to pilot-scale production of gold nanoparticle-wool fibre composites is presented. The PhD research was an integral step in the successful commercialisation of this innovative nanotechnology, and will assist in scaling-up the synthesis of metal nanoparticle colloids and nanocomposites in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document