scholarly journals Immobilization of Catalase on Chitosan/ZnO and Chitosan/ZnO/Fe2O3 Nanocomposites: A Comparative Study

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 820
Author(s):  
Reda M. El-Shishtawy ◽  
Nahed S. E. Ahmed ◽  
Yaaser Q. Almulaiky

The strong catalytic performance, eco-friendly reaction systems, and selectivity of enzyme-based biocatalysts are extremely interesting. Immobilization has been shown to be a good way to improve enzyme stability and recyclability. Chitosan-incorporated metal oxides, among other support matrices, are an intriguing class of support matrices for the immobilization of various enzymes. Herein, the cross-linked chitosan/zinc oxide nanocomposite (CS/ZnO) was synthesized and further improved by adding iron oxide (Fe2O3) nanoparticles. The final cross-linked CS/ZnO/Fe2O3 nanocomposite was used as an immobilized support for catalase and is characterized by SEM, EDS, and FTIR. The nanocomposite CS/ZnO/Fe2O3 enhanced the biocompatibility and immobilized system properties. CS/ZnO/Fe2O3 achieved a higher immobilization yield (84.32%) than CS/ZnO (37%). After 10 repeated cycles, the remaining immobilized catalase activity of CS/ZnO and CS/ZnO/Fe2O3 was 14% and 45%, respectively. After 60 days of storage at 4 °C, the remaining activity of immobilized enzyme onto CS/ZnO and CS/ZnO/Fe2O3 was found to be 32% and 47% of its initial activity. The optimum temperature was noticed to be broad at 25–30 °C for the immobilized enzyme and 25 °C for the free enzyme. Compared with the free enzyme optimum pH (7.0), the optimum pH for the immobilized enzyme was 7.5. The Km and Vmax values for the free and immobilized enzyme on CS/ZnO, and the immobilized enzyme on CS/ZnO/Fe2O3, were found to be 91.28, 225.17, and 221.59 mM, and 10.45, 15.87, and 19.92 µmole ml−1, respectively. Catalase immobilization on CS/ZnO and CS/ZnO/Fe2O3 offers better stability than free catalase due to the enzyme’s half-life. The half-life of immobilized catalase on CS/ZnO/Fe2O3 was between 31.5 and 693.2 min.

2014 ◽  
Vol 12 (1) ◽  
pp. 587-596 ◽  
Author(s):  
J. Rodriguez ◽  
F. Soria ◽  
H. Geronazzo ◽  
H. Destefanis

Abstract The α-amylase from Aspergillus oryzae was immobilized covalently onto expanded perlite (EP) and modified EP by treatment with TiO2 (EP-TiO2), dye HE3B (EP-HE3B) polyethylene terephthalate (PET)-hydrazide (EP-PET) and magnetite (EP-magnetite). The modified EP was characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The supports were functionalized with aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA). The optimum pH for free and immobilized α-amylase was 5.5. Temperature of maximum activity for free enzyme and immobilized enzyme on EP-HE3B was 50°C. The immobilized enzyme in EP-APTES this value was 55°C. The immobilized α-amylase in EP-APTES and EP-HE3B-APTES exhibited better thermostability than free enzyme. The immobilized derivatives showed moderate operational stability by retaining 50% of initial activity after seven successive reuses.


2003 ◽  
Vol 46 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Gargi Dey ◽  
Singh Bhupinder ◽  
Rintu Banerjee

A maltooligosaccharide-forming amylase from B circulans GRS 313 was immobilized by entrapment in calcium alginate beads. The immobilized activity was affected by the size of the bead and bead size of 2mm was found to be most effective for hydrolysis. Kinetics constants, Km and Vmax were estimated and were found to be affected by the bead size. The catalytic activity of the enzyme was studied in presence of various starchy residues and metal ions. HgCl2, CuSO4 and FeCl3 caused inhibition of the enzyme. The reaction conditions, pH and temperature, was optimized using response surface methodology. At the optimum pH and temperature of 4.9 and 57ºC, the apparent activity was 25.6U/g of beads, resulting in almost 2-fold increase in activity. The immobilized enzyme showed a high operational stability by retaining almost 85% of the initial activity after seventh use.


2018 ◽  
Vol 43 (6) ◽  
pp. 595-604
Author(s):  
Yakup Aslan ◽  
Derya Ömerosmanoğlu ◽  
Eda Öndül Koç

Abstract Objective Since the soluble enzymes can not be used in repeated reactions and are not stable in operational conditions and not suitable for continuous processes, this study aimed the covalent immobilization of Bacillus licheniformis protease (BLP) onto Eupergit CM. Methods Optimum conditions for immobilization were determined by changing the conditions individually. The proteins and L-tyrosine were determined by UV/VIS spectrophotometer. Results The immobilization resulted in 100% immobilization and 107.7% activity yields. The optimum pH (7–8) and the optimum temperature (70°C) have not changed after immobilization. The Km values for free and immobilized enzyme were 26.53 and 37.59 g/L, while the Vmax values were 2.84 and 3.31 g L-Tyrosine/L·min, respectively. The immobilized enzyme has not lost its initial activity during the repeated 20 uses and 20 days of storage. The milk proteins were hydrolyzed in 2 h by using immobilized enzyme. The pH of the milk dropped from 6.89 to 6.53, the color was clearer but there was no change in the smell or the taste. Conclusion Consequently, it can be said that the immobilized BLP obtained can be used for industrial purposes.


Clay Minerals ◽  
2020 ◽  
Vol 55 (2) ◽  
pp. 120-131
Author(s):  
Yonca Avci Duman ◽  
A. Uğur Kaya ◽  
Çiğdem Yağci

AbstractIn this study, for the first time Bacillus methylotrophicus Y37 cellulase was purified and recovered in a single step by three-phase partitioning (TPP). The optimal purification parameters for TPP were 40% ammonium sulfate saturation (m/v) with a 1.0:1.0 (v/v) ratio of crude extract:t-butanol, which gave 5.8-fold purification with 155% recovery of cellulase. Non-covalent immobilization of the partitioned cellulase was performed using bentonite as a support material. The activity observed in the 20th experiment was 100%. The optimal pH values and temperatures determined for the free enzyme and the immobilized enzyme were 5.0 and 6.0 and 45°C and 50°C, respectively. The Arrhenius activation energy (Ea) of the immobilized enzyme was lower than that of the free enzyme, whereas the Michaelis–Menten constant (Km) and maximum velocity (Vm) of the immobilized enzyme increased. The turnover number (kcat) and the catalytic performance (kcat/Km) demonstrated the improved catalytic properties of the immobilized enzyme compared to the free enzyme. Immobilization of cellulase is thermodynamically preferred.


2021 ◽  
Vol 9 (7) ◽  
pp. 1418
Author(s):  
Nalapat Leangnim ◽  
Jakkrit Aisara ◽  
Kridsada Unban ◽  
Chartchai Khanongnuch ◽  
Apinun Kanpiengjai

Previously, nine tannin-tolerant and tannase-producing yeasts were isolated from Miang; all produced cell-associated tannase (CAT) during growth in tannin substrate. Among which, only CAT from Sporidiobolus ruineniae showed better stability than its purified form. Yet, it is of particular interest to directly characterize CATs from the latter yeasts. In this study, four CATs from yeasts, namely Cyberlindnera rhodanensis A22.3, Candida sp. A39.3, Debaryomyces hansenii A45.1, and Cy. rhodanensis A45.3 were characterized. The results indicate that all CATs were produced within the same production yield (11 mU/mL). Most CATs exhibited similar pH and temperature optima and stabilities, except for CAT from Cy. rhodanensis A22.3. This CAT was assigned as acid-stable tannase due to its unusual optimum pH of 2.0 with pH stability and half-life thermostability in the range of pH 2.0–4.0, and 70 °C, respectively. All CATs demonstrated high substrate specificity toward epigallocatechin gallate and epicatechin gallate, thus forming epigallocatechin and epicatechin, respectively. Moreover, they showed operational stability to repeated use for up to five cycles without loss of the initial activity. Therefore, CATs from these yeasts could be useful for the extraction and biotransformation of tea catechins and related applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
G. Arabaci ◽  
A. Usluoglu

Catalase was partially purified fromMalva sylvestrisL. and immobilized onto chitosan. Then, its catalytic properties were investigated. (NH4)2SO4precipitation and dialysis were performed in the extracted enzyme. Further purification was performed with sephadex G-200 column. Kinetic studies of the purified enzyme activity were measured and characterized. The inhibitory effects of KCN, NaN3, CuSO4, and EDTA onM. sylvestrisL. catalase activity were observed except NaCl. Furthermore,M. sylvestrisL. catalase was immobilized covalently with glutaraldehyde onto chitosan particles. The pH and temperature optima as well as the changes in the kinetics (Km, Vmax) of the immobilized and freeM. sylvestrisL. catalase were determined. The Km value for immobilized catalase (23.4 mM) was higher than that of free enzyme (17.6 mM). Optimum temperature was observed higher than that of the free enzyme. The optimum pH was the same for both free and immobilized catalases (pH 7.50). Immobilized catalase showed higher storage and thermal stabilities than free catalases. Free catalase lost all its activity within 60 days whereas immobilized catalase lost 45% of its activity during the same incubation period at 4°C. The remaining immobilized catalase activity was about 70% after 8 cycles of batch operations.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
M. Pesaran ◽  
Gh. Amoabediny ◽  
F. Yazdian

A new nanoporous biomatrix originated from bacterial resources has been chosen for urease immobilization. Urease has been immobilized on synthesized bacterial cellulose nanofiber since this enzyme has a key role in nitrogen metabolism.Gluconacetobacter xylinumATCC 10245 has been cultivated for synthesis of a nanofiber with the diameter of 30–70 nm. Different cultivation processes in the aspect of time and cultivation medium conditions were chosen to study the performance of immobilized enzyme on four types of bacterial cellulose nanofibers (BCNs). Urease immobilization into the nanofiber has been done in two steps: enzyme adsorption and glutaraldehyde cross-linking. The results showed that the immobilized enzymes were relatively active and highly stable compared to the control samples of free enzymes. Optimum pH was obtained 6.5 and 7 for different synthesized BCNs, while the optimum temperature for immobilized urease was 50°C. Finding of the current experiment illustrated that the immobilized enzyme in optimum condition lost its initial activity by 41% after 15 weeks.


2008 ◽  
Vol 73 (6) ◽  
pp. 609-618 ◽  
Author(s):  
Özlem Alptekin ◽  
Seyhan Tükel ◽  
Deniz Yildirim

Bovine liver catalase immobilized on eggshell particles was characterized and the reusability of the immobilized catalase was investigated in a batch type reactor. For immobilized catalase onto ground eggshell (ICATG), the optimum initial amount of catalase was 85 mg g-1 of eggshells, the optimum pH was 6.0 (75 mM citrate buffer) and the temperature was 30?C. The Vmax and Km values of ICATG were determined as 29.1?1.2 U/mg of protein and 41.9?2.7 mM, respectively. The reusability of ICATG was tested and the remaining activity of ICATG was found to be 73% of the initial activity after 80 cycles of batch operation. The amount of catalase bound onto the carrier was estimated by using the results of induced coupled plasma measurements. The catalytic efficiencies (kcat/Km) of free catalase and ICATG were found to be 1.4x106 and 2.8x103 dm3 s-1 mol-1, respectively. Catalase immobilization onto eggshell is economic and has good reusability. Hence, it can be concluded that eggshell is an efficient carrier for immobilizing catalase.


2017 ◽  
Vol 20 (1) ◽  
pp. 37-47 ◽  
Author(s):  
E.O.V. Fundador ◽  
V.C. Sabularse Fundador ◽  
M.A.J.R. Revilleza

Nata de coco, the cellulose produced by Acetobacter aceti with coconut water as substrate, was used as starting material in the synthesis of carboxymethylcellulose after treatment with NaOH and monochloroacetic acid. The product, referred to as carboxymethyl-“nata” (CMN), had a degree of substitution of 0.76, a higher value than those previously reported. This was used in the immobilization of invertase via ionic interaction and adsorptive forces, which produced a viscous colloidal suspension. Agar was incorporated to facilitate pellet formation. Interactions between the agar and the CMN-invertase may have resulted from ionic interactions as well as H-bonding. The immobilized enzyme retained 71% of its initial activity and exhibited optimum pH of 4.5 and an optimum temperature of 55°C. It was more sensitive to pH and temperature changes. The Michaelis constant, Km, was 107.43 mM for the immobilized enzyme, and 71.42 mM for the free enzyme. The Vmax values were 89.28 µmole min-1 and 82.64 µmole min for the free and immobilized enzyme, respectively. Statistical analyses showed that V values did not vary significantly. The higher K of the immobilized enzyme may be attributed to diffusional effects, steric hindrance and conformational modifications of the enzyme. The immobilized enzyme has potential for further applications because of its stability with storage, repeated and continuous use.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 181 ◽  
Author(s):  
Wesam H. Abdulaal ◽  
Yaaser Q. Almulaiky ◽  
Reda M. El-Shishtawy

Horseradish peroxidase (HRP) enzyme was effectively encapsulated onto an Fe3O4 nanoparticle–polymethyl methacrylate (PMMA) film via the casting method. The HRP was immobilized on the 0.5% Fe3O4Np–PMMA film and characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Moreover, the reusability, thermal stability, optimum pH, optimum temperature, the influence of metal ions, and the effects of detergent and organic solvent were investigated. After optimizing the immobilization conditions, the highest efficiency of the immobilized enzyme was 88.4% using 0.5% Fe3O4Np–PMMA. The reusability of the immobilized HRP activity was 78.5% of its initial activity after being repeatedly used for 10 cycles. When comparing the free and immobilized forms of the HRP enzyme, changes in the optimum temperature and optimum pH from 30 to 40 °C and 7.0 to 7.5, respectively, were observed. The Km and Vmax for the immobilized HRP were estimated to be 41 mM, 0.89 U/mL for guaiacol and 5.84 mM, 0.66 U/mL for H2O2, respectively. The high stability of the immobilized HRP enzyme was obtained using metal ions, a high urea concentration, isopropanol, and Triton X-100. In conclusion, the applicability of immobilized HRP involves the removal of phenol in the presence of hydrogen peroxide, therefore, it could be a potential catalyst for the removal of wastewater aromatic pollutants.


Sign in / Sign up

Export Citation Format

Share Document