scholarly journals CO2 Hydrogenation on NixMg1−xAl2O4: A Comparative Study of MgAl2O4 and NiAl2O4

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1026
Author(s):  
Boseok Seo ◽  
Eunhee Ko ◽  
Jinho Boo ◽  
Minkyu Kim ◽  
Dohyung Kang ◽  
...  

Due to the increasing attention focused on global warming, many studies on reducing CO2 emissions and developing sustainable energy strategies have recently been performed. One of the approaches is CO2 methanation, transforming CO2 into methane. Such transformation (CO2 + 4H2 → CH4 + 2H2O) provides advantages of carbon liquification, storage, etc. In this study, we investigated CO2 methanation on nickel–magnesium–alumina catalysts both experimentally and computationally. We synthesized the catalysts using a precipitation method, and performed X-ray diffraction, temperature-programmed reduction, and N2 adsorption–desorption tests to characterize their physical and chemical properties. NiAl2O4 and MgAl2O4 phases were clearly observed in the catalysts. In addition, we conducted CO2 hydrogenation experiments by varying with temperatures to understand the reaction. Our results showed that CO2 conversion increases with Ni concentration and that MgAl2O4 exhibits high selectivity for CO. Density functional theory calculations explained the origin of this selectivity. Simulations predicted that adsorbed CO on MgAl2O4(100) weakly binds to the surface and prefers to desorb from the surface than undergoing further hydrogenation. Electronic structure analysis showed that the absence of a d orbital in MgAl2O4(100) is responsible for the weak binding of CO to MgAl2O4. We believe that this finding regarding the origin of the CO selectivity of MgAl2O4 provides fundamental insight for the design methanation catalysts.

2017 ◽  
Vol 23 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Yajing Zhang ◽  
Yu Zhang ◽  
Fu Ding ◽  
Kangjun Wang ◽  
Wang Xiaolei ◽  
...  

A series of La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts were prepared by an oxalate co-precipitation method. The catalysts were fully characterized by X-ray diffraction (XRD), N2 adsorption-desorption, hydrogen temperature pro-grammed reduction (H2-TPR), ammonia temperature programmed desorption (NH3-TPD), and X-ray photoelectron spectroscopy (XPS) techniques. The effect of the La2O3 content on the structure and performance of the catalysts was thoroughly investigated. The catalysts were evaluated for the direct synthesis of dimethyl ether (DME) from CO2 hydrogenation. The results displayed that La2O3 addition enhanced catalytic performance, and the maximal CO2 conversion (34.3%) and DME selectivity (57.3%) were obtained over the catalyst with 1% La2O3, which due to the smaller size of Cu species and a larger ratio of Cu+/Cu.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elin Grånäs ◽  
Michael Busch ◽  
Björn Arndt ◽  
Marcus Creutzburg ◽  
Guilherme Dalla Lana Semione ◽  
...  

AbstractFrom the catalytic, semiconducting, and optical properties of zinc oxide (ZnO) numerous potential applications emerge. For the physical and chemical properties of the surface, under-coordinated atoms often play an important role, necessitating systematic studies of their influence. Here we study the vicinal ZnO($$10\bar{1}4$$ 10 1 ¯ 4 ) surface, rich in under-coordinated sites, using a combination of several experimental techniques and density functional theory calculations. We determine the atomic-scale structure and find the surface to be a stable, long-range ordered, non-polar facet of ZnO, with a high step-density and uniform termination. Contrary to an earlier suggested nano-faceting model, a bulk termination fits much better to our experimental observations. The surface is further stabilized by dissociatively adsorbed H2O on adjacent under-coordinated O- and Zn-atoms. The stabilized surface remains highly active for water dissociation through the remaining under-coordinated Zn-sites. Such a vicinal oxide surface is a prerequisite for future adsorption studies with atomically controlled local step and terrace geometry.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1869
Author(s):  
Hee-Gon Kim ◽  
Keunsu Choi ◽  
Kibong Lee ◽  
Soonjae Lee ◽  
Kyung-Won Jung ◽  
...  

Tetracyclines (TCs) are the most widely used antibiotics for the prevention and treatment of livestock diseases, but they are toxic to humans and have frequently been detected in water bodies. In this study, the physical and chemical properties of the zirconium-based metal organic framework (MOF) UiO-66 and its NH2-functionalized congener UiO-66-NH2 were investigated along with batch TC adsorption tests to determine the effect of functionalization on TC removal. TC removal was highest at pH 3 and decreased with increasing pH. Pseudo-1st and pseudo-2nd-order kinetic models were used to study the adsorption equilibrium times, and Langmuir isotherm model was found to be more suitable than Freundlich model. The maximum uptake for UiO-66 and UIO-66-NH2 was measured to be 93.6 and 76.5 mg/g, respectively. Unexpectedly, the TC adsorption capacity of UiO-66-NH2 was observed to be lower than that of UiO-66. Density functional theory calculations revealed that the pore structures are irrelevant to TC adsorption, and that the –NH2 functional group could weaken the structural robustness of UiO-66-NH2, causing a reduction in TC adsorption capacity. Accordingly, robust MOFs with zirconium-based metal clusters can be effectively applied for the treatment of antibiotics such as TC in water.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 583
Author(s):  
Javier Moya ◽  
Javier Marugán ◽  
María Orfila ◽  
Manuel Antonio Díaz-Pérez ◽  
Juan Carlos Serrano-Ruiz

To improve the thermochemical energy storage (TCS) behavior of Mn2O3, several Mn–Mo oxides with varying amounts of MoO3 (0–30 wt%) were prepared by a precipitation method. The physico-chemical properties of the solids were studied by N2 adsorption–desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), and H2-temperature-programmed reduction (TPR), while their TCS behavior was determined by thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC). Apart from Mn2O3 and MoO3 phases, XRD revealed a mixed MnMoO4 phase for MoO3 loadings equal or higher than 1.5 wt%. All samples showed a well-formed coral-like surface morphology, particularly those solids with low MoO3 contents. This coral morphology was progressively decorated with compact and Mo-enriched MnMoO4 particles as the MoO3 content increased. TPR revealed that the redox behavior of Mn2O3 was significantly altered upon addition of Mo. The TCS behavior of Mn2O3 (mostly oxidation kinetics and redox cyclability) was enhanced by addition of low amounts of Mo (0.6 and 1.5% MoO3) without significantly increasing the reduction temperature of the solids. The coral morphology (which facilitated oxygen diffusion) and a smoother transition from the reduced to oxidized phase were suggested to be responsible for this improved TCS behavior. The samples containing 0.6 and 1.5 wt% of MoO3 showed outstanding cyclability after 45 consecutive reduction–oxidation cycles at high temperatures (600–1000 °C). These materials could potentially reach absorption efficiencies higher than 90% at concentration capacity values typical of concentrated solar power plants.


2019 ◽  
Vol 17 (1) ◽  
pp. 1459-1465
Author(s):  
Xuedong Feng ◽  
Jing Yi ◽  
Peng Luo

AbstractWith the purpose of studying the influence of NO/O2 on the NOx storage activity, a Pt-Ba-Ce/γ-Al2O3 catalyst was synthesized by an acid-aided sol-gel method. The physical and chemical properties of the catalyst were characterized by X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) methods. The results showed that the composition of the catalyst was well-crystallized and the crystalline size of CeO2 (111) was about 5.7 nm. The mechanism of NO and NO2 storage and NOx temperature programmed desorption (NO-TPD) experiments were investigated to evaluate the NOx storage capacity of the catalyst. Pt-Ba-Ce/γ-Al2O3 catalyst presented the supreme NOx storage performance at 350℃, and the maximum value reached to 668.8 μmol / gcat. Compared with O2-free condition, NO oxidation to NO2 by O2 had a beneficial effect on the storage performance of NOx. NO-TPD test results showed that the NOx species stored on the catalyst surface still kept relatively stable even below 350℃.


NANO ◽  
2021 ◽  
pp. 2150050
Author(s):  
Zhaoyu Han ◽  
Sen Li ◽  
Shaoxian Yin ◽  
Zhi-Qin Wang ◽  
Yanfei Cai ◽  
...  

Being the newest member of the 2D materials family, 2D-nanosheet possesses many distinctive physical and chemical properties resulting in a wide range of potential applications. Recently, it was discovered that 2D COF can adsorb single-stranded DNA (ss-DNA) efficiently as well as usefully to quench fluorophores. These properties make it possible to prepare DNA-based optical biosensors using 2D COF. While practical analytical applications are being demonstrated, the fundamental understanding of binding between 2D COF and DNA in solution received relatively less attention. In this work, we carried out a systematic study to understand the adsorption and desorption kinetic, mechanism, and influencing factors of ss-DNA on the surface of 2D COF. We demonstrated that shorter DNAs are adsorbed more rapidly and bind more tightly to the surface of 2D COF. The adsorption is favored by a higher pH. The different buffer types also can affect the adsorption. In Tris-HCl solution, the adsorption reached highest efficiency. By adding the complementary DNA (cDNA), desorption of the absorbed DNA on 2D COF can be achieved. Further, desorption efficiency can also be exchanged by various surfactant in solution. These findings are important for further understanding of the interactions between DNA and COFs and for the optimization of DNA and COF-based devices and sensors.


Química Nova ◽  
2021 ◽  
Author(s):  
Kamila Ody ◽  
João Jesus ◽  
Carlos Cava ◽  
Anderson Albuquerque ◽  
Ary Maia ◽  
...  

ASSESSMENT OF THE ELECTRONIC STRUCTURE OF THE MONOCLINIC PHASE OF NIOBIUM OXIDE BASED ON THE USE OF DIFFERENT DENSITY FUNCTIONALS. Niobium oxides, Nb2O5, are considered semiconductor materials with very attractive physical and chemical properties for applications in many areas, such as catalysis, sensors, medical, aerospace, etc. Especially, the characterization of Nb2O5-based nanostructures with monoclinic structure has received much attention in recent years. However, despite the great importance of this system, some of its fundamentals properties are still not fully understood. Hence, this work aims to apply the theoretical methodologies through Density Functional Theory (DFT) calculations in periodic models based on the use of different density functionals (like B1WC, B3PW, B3LYP, PBE0, PBESOL0, SOGGAXC, and WC1LYP) to investigate the physical and chemical properties of the monoclinic structure of Nb2O5. The band structures, energy bandgap, density of state, and vibrational properties, as well as order-disorder effects on the monoclinic structure of Nb2O5 are investigated in this study. Our theoretical results show a better agreement with experimental data for the B3LYP functional and hence lead to new perspectives on the deeper physicochemical understanding of the monoclinic Nb2O5. From these computational tools, it is possible to unravel the relations between structure and properties, which may contribute to the future development of new devices and applications based on these materials.


2019 ◽  
Vol 9 (4) ◽  
pp. 323-334 ◽  
Author(s):  
Zeinab Hoseini Dastgerdi ◽  
Seyyed Salar Meshkat ◽  
Mehdi D. Esrafili

AbstractThe present work considers an adsorptive removal of Indigo carmine (IC) dye onto nanotube carbon (CNTs). The pure CNTs were prepared via chemical vapor deposition (CVD) method utilizing methane gas as a carbon source at 1000 °C in a quartz tube. The morphology and surface chemical structure of the adsorbents were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption/desorption technique, and thermal gravity analysis (TGA). The parameters of the IC dye adsorption, such as initial concentration, contact time, pH, and mass-loaded adsorbent, were evaluated. The kinetic study confirmed that a pseudo-second-order model was best fitted to the adsorption data. The removal efficiency of adsorption onto pure and COOH-functionalized CNTs was 84% and 98.7% at 15 min, respectively. The equilibrium results were fitted well to the Langmuir isotherm model. The adsorption capacity of the CNT and COOH–CNT was 88.5 and 136 mg/g, respectively. The reusability of the adsorbents was studied, and after eight cycles, the efficiency decreased to 70%. Moreover, the density functional theory calculations confirmed that the functionalization of CNTs with COOH groups improves the adsorption properties of IC due to the formation of hydrogen-bonding interactions.


2020 ◽  
Vol 81 (6) ◽  
pp. 1273-1282 ◽  
Author(s):  
Hangdao Qin ◽  
Hao Cheng ◽  
Chenggui Long ◽  
Xiaogang Wu ◽  
Yanhong Chen ◽  
...  

Abstract N, S co-doped MnFe2O4@C magnetic nanoparticles were successfully synthesized by a simple method involving the preparation of MnFe2O4 nanoparticles and subsequent pyrolysis treatment. The physical and chemical properties of MnFe2O4, MnFe2O4@C and MnFe2O4@C–NS nanoparticles were characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), transmission electron microscopy (TEM), N2 adsorption–desorption and the pH at the point of zero charge. Their performances in the adsorption of Hg(II) from water were investigated. The adsorption process followed pseudo-second-order kinetics and the experimental data of equilibrium isotherms fitted well with the Langmuir model. MnFe2O4@C–NS showed the highest adsorption capacity of 108.56 mg/g, increasing more than 1.7 times compared to MnFe2O4. The enhanced adsorption performance was attributed to the larger specific surface area as well as the complexation of N and S ligands on the surface. The thermodynamic parameters of ΔH°, ΔS° and ΔG° at 30 °C were −24.39 kJ/mol, −0.046 kJ/mol K and −10.45 kJ/mol, respectively, which indicated that the adsorption of Hg(II) on MnFe2O4@C–NS was exothermic and spontaneous in nature. Moreover, MnFe2O4@C–NS showed superior selectivity towards Hg(II) compared with other metal ions generally present in mercury-containing industrial wastewater.


Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 599 ◽  
Author(s):  
Le ◽  
Kim ◽  
Jeong ◽  
Park

In this study, unique core-shell aluminate spinel supports, Al@MAl2O4 (M = Zn, Mg, or Mn), were obtained by simple hydrothermal surface oxidation and were applied to the preparation of supported Ni catalysts for CO2 methanation. For comparison, CO methanation was also evaluated using the same catalysts. The prepared catalysts were characterized with a variety of techniques, including N2 physisorption, CO2 chemisorption, H2 chemisorption, temperature-programmed reduction with H2, temperature-programmed desorption of CO2, X-ray diffraction, high-resolution transmission electron microscopy, and in-situ diffuse reflectance infrared Fourier transform spectroscopy. The combination of supports with core-shell spinel structures and Ni doping with a deposition–precipitation method created outstanding catalytic performance of the Ni catalysts supported on Al@MgAl2O4 and Al@MnAl2O4 due to improved dispersion of Ni nanoparticles and creation of moderate basic sites with suitable strength. Good stability of Ni/Al@MnAl2O4 catalyst was also confirmed in the study.


Sign in / Sign up

Export Citation Format

Share Document