scholarly journals A ‘Defective’ Conjugated Porous Poly-Azo as Dual Photocatalyst

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1064
Author(s):  
Ipsita Nath ◽  
Jeet Chakraborty ◽  
Sara Abednatanzi ◽  
Pascal Van Der Voort

A heterogeneous photocatalyst amenable to catalyze different chemical reactions is a highly enabling and sustainable material for organic synthesis. Herein we report the synthesis and characterization of an azobenzene-based organic π–conjugated porous polymer (AzoCPP) as heterogeneous dual photocatalyst manifesting net-oxidative bromination of arenes and dehydroxylation of boronic acids to corresponding phenols. Hierarchical porosity and high surface area of the nano-sized AzoCPP allowed superior catalyst-substrate contact during catalyses, whereas the inherent structural defect present in the CPP backbone resulted in low-energy sinks functioning as de facto catalytic sites. A combination of these two structure-property aspects of AzoCPP, in addition to the dielectric constant manipulation of the system, led to excellent catalytic performance. The protocols remained valid for a wide substrate scope and the catalyst was recycled multiple times without substantial loss in catalytic activity. With the aid of subsequent control experiments and analytical characterizations, mechanisms for each catalysis are proposed and duly corroborated.

2021 ◽  
Vol 43 (1) ◽  
pp. 1-1
Author(s):  
Guo Yingwei Guo Yingwei ◽  
Chen Xuedan Chen Xuedan ◽  
Yan Shiting Yan Shiting ◽  
Zhang Zhengliang Zhang Zhengliang ◽  
Chen Yuqin Chen Yuqin ◽  
...  

A series of silica gel (SG) supported metal ionic liquid catalysts (x[Bmim]Cl-CrCl3/SG) were synthesized and exploited for the esterification of palmitic acid (PA) with methanol (ML) to produce biodiesel efficiently. The 10%[Bmim]Cl-CrCl3/SG catalyst with high surface area and desirable acidity exhibited the best catalytic performance and reusability after six consecutive running cycles. Based on the response surface analysis, the optimal reaction conditions were obtained as follows: methanol/acid mole ratio = 11:1 mol/mol, catalyst amount = 5.3 wt%, reaction time = 65 min, as well as reaction temperature = 373 K, reaching to a biodiesel yield of 96.1%. Further kinetic studies demonstrated that the esterification of PA with ML obeyed 1.41 order kinetics for acid concentration with the activation energy of 16.88 kJ/mol


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257777
Author(s):  
Anuja Tripathi ◽  
Kenneth D. Harris ◽  
Anastasia L. Elias

Nitrogen-functionalization is an effective means of improving the catalytic performances of nanozymes. In the present work, plasma-assisted nitrogen modification of nanocolumnar Ni GLAD films was performed using an ammonia plasma, resulting in an improvement in the peroxidase-like catalytic performance of the porous, nanostructured Ni films. The plasma-treated nanozymes were characterized by TEM, SEM, XRD, and XPS, revealing a nitrogen-rich surface composition. Increased surface wettability was observed after ammonia plasma treatment, and the resulting nitrogen-functionalized Ni GLAD films presented dramatically enhanced peroxidase-like catalytic activity. The optimal time for plasma treatment was determined to be 120 s; when used to catalyze the oxidation of the colorimetric substrate TMB in the presence of H2O2, Ni films subjected to 120 s of plasma treatment yielded a much higher maximum reaction velocity (3.7⊆10−8 M/s vs. 2.3⊆10−8 M/s) and lower Michaelis-Menten coefficient (0.17 mM vs. 0.23 mM) than pristine Ni films with the same morphology. Additionally, we demonstrate the application of the nanozyme in a gravity-driven, continuous catalytic reaction device. Such a controllable plasma treatment strategy may open a new door toward surface-functionalized nanozymes with improved catalytic performance and potential applications in flow-driven point-of-care devices.


2019 ◽  
Vol 16 (32) ◽  
pp. 279-286
Author(s):  
Marcos Antônio KLUNK ◽  
Zeban SHAH ◽  
Paulo Roberto WANDER

Removal of malachite green dye by adsorption from aqueous solution using montmorillonite clay is reported in this work. A malachite green dye is a cationic widely used in textile industries. Due to its persistence in the aquatic environment, it becomes a problem for aquatic and terrestrial organisms. This dye can be adsorbed through various techniques, but high acquisition and operating costs preclude widespread use. Several adsorbents are available in the market, but the most outstanding are the clays, especially the montmorillonites. These clays are finely divided material ( 0.002 mm), and its adsorption properties are continuously investigated. Types of clays 2:1 (two tetrahedral to one octahedral) are called expandables. The montmorillonite has a potential for dyes removal in wastewater due to the high surface area, porosity with excellent cation exchange capacity conferring its adsorbent property. This work aims to use the montmorillonite as an adsorption system in stages to textile decolorization effluent, composed of malachite green dye, reproduced in the laboratory. The characterization of the clay gives high purity and is used as adsorbent of good quality and efficiency. The retention of dyes in the system composed of montmorillonite arranged in separation stages was efficient. The effect of dye concentration and retention time are the most important parameters used in this study. High concentrations and retention time below 24 hours resulted in low levels of removal (25%). On the other hand, the low level of initial concentration increases removal efficiency (57%). Thus, the results obtained in this work allow concluding that montmorillonite is able to removal malachite green dye.


2017 ◽  
Vol 36 (3) ◽  
pp. 44-53
Author(s):  
G. D. Akpen ◽  
M. I. Aho ◽  
N. Baba

Activated carbon was prepared from the pods of Albizia saman for the purpose of converting the waste to wealth. The pods were thoroughly washed with water to remove any dirt, air- dried and cut into sizes of 2-4 cm. The prepared pods were then carbonised in a muffle furnace at temperatures of 4000C, 5000C, 6000C ,7000C and 8000C for 30 minutes. The same procedure was repeated for 60, 90, 120 and 150 minutes respectively. Activation was done using impregnationratios of 1:12, 1:6, 1:4, 1:3, and 1:2 respectively of ZnCl2 to carbonised Albizia saman pods by weight. The activated carbon was then dried in an oven at 1050C before crushing for sieve analysis. The following properties of the produced Albizia saman pod activated carbon (ASPAC) were determined: bulk density, carbon yield, surface area and ash, volatile matter and moisture contents. The highest surface area of 1479.29 m2/g was obtained at the optimum impregnation ratio, carbonization time and temperature of 1:6, 60 minutes and 5000C respectively. It was recommended that activated carbon should be prepared from Albizia saman pod with high potential for adsorption of pollutants given the high surface area obtained.Keywords: Albizia saman pod, activated carbon, carbonization, temperature, surface area


1996 ◽  
Vol 457 ◽  
Author(s):  
Lin-chiuan Yan ◽  
Levi T. Thompson

ABSTRACTNew methods have been developed for the synthesis of high surface area cation-substituted hexaaluminates. These materials were prepared by calcining high temperature (ethanol extraction) or low temperature (CO2 extraction) aerogels at temperatures up to 1600°C. Cation-substituted hexaaluminates have emerged as promising catalysts for use in high temperature catalytic combustion. In comparing unsubstituted and cation-substituted hexaaluminates, we found that the phase transformations were much cleaner for the cation-substituted materials. BaCO3 and BaAl2O4 were intermediates during transformation of the unsubstituted materials, while the cation-substituted materials transformed directly from an amorphous phase to crystalline hexaaluminate. Moreover, the presence of substitution cations caused the transformation to occur at lower temperatures. Mn seems to be a better substitution cation than Co since the Mn-substituted materials exhibited higher surface areas and better heat resistances than the Co-substituted materials. The low temperature aerogel-derived materials possessed quite different characteristics from the high temperature aerogel-derived materials. For example, phase transformation pathways were different.


1999 ◽  
Vol 179 (1-2) ◽  
pp. 203-216 ◽  
Author(s):  
Eiji Hayashi ◽  
Eiji Iwamatsu ◽  
Mohammad Elias Biswas ◽  
Yuzo Sanada ◽  
Shakeel Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document