scholarly journals Neuroprotective Natural Products for Alzheimer’s Disease

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1309
Author(s):  
Xin Chen ◽  
Joshua Drew ◽  
Wren Berney ◽  
Wei Lei

Alzheimer’s disease (AD) is the number one neurovegetative disease, but its treatment options are relatively few and ineffective. In efforts to discover new strategies for AD therapy, natural products have aroused interest in the research community and in the pharmaceutical industry for their neuroprotective activity, targeting different pathological mechanisms associated with AD. A wide variety of natural products from different origins have been evaluated preclinically and clinically for their neuroprotective mechanisms in preventing and attenuating the multifactorial pathologies of AD. This review mainly focuses on the possible neuroprotective mechanisms from natural products that may be beneficial in AD treatment and the natural product mixtures or extracts from different sources that have demonstrated neuroprotective activity in preclinical and/or clinical studies. It is believed that natural product mixtures or extracts containing multiple bioactive compounds that can work additively or synergistically to exhibit multiple neuroprotective mechanisms might be an effective approach in AD drug discovery.

Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1519 ◽  
Author(s):  
Habtemariam

Despite extensive progress in understanding the pathology of Alzheimer’s disease (AD) over the last 50 years, clinical trials based on the amyloid–beta (Aβ) hypothesis have kept failing in late stage human trials. As a result, just four old drugs of limited clinical outcomes and numerous side effects are currently used for AD therapy. This article assesses the common pharmacological targets and therapeutic principles for current and future drugs. It also underlines the merits of natural products acting through a polytherapeutic approach over a monotherapy option of AD therapy. Multi-targeting approaches through general antioxidant and anti-inflammatory mechanisms coupled with specific receptor and/or enzyme-mediated effects in neuroprotection, neuroregeneration, and other rational perspectives of novel drug discovery are emphasized.


Author(s):  
Thanh Tung Bui ◽  
Thanh Hai Nguyen

AbstractAlzheimer’s disease (AD) is related to increasing age. It is mainly characterized by progressive neurodegenerative disease, which damages memory and cognitive function. Natural products offer many options to reduce the progress and symptoms of many kinds of diseases, including AD. Meanwhile, natural compound structures, including lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids, have anti-inflammatory, antioxidant, anti-amyloidogenic, and anticholinesterase activities. In this review, we summarize the pathogenesis and targets for treatment of AD. We also present several medicinal plants and isolated compounds that are used for preventing and reducing symptoms of AD.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3289
Author(s):  
Oxana Semyachkina-Glushkovskaya ◽  
Thomas Penzel ◽  
Inna Blokhina ◽  
Alexander Khorovodov ◽  
Ivan Fedosov ◽  
...  

The deposition of amyloid-β (Aβ) in the brain is a risk factor for Alzheimer’s disease (AD). Therefore, new strategies for the stimulation of Aβ clearance from the brain can be useful in preventing AD. Transcranial photostimulation (PS) is considered a promising method for AD therapy. In our previous studies, we clearly demonstrated the PS-mediated stimulation of lymphatic clearing functions, including Aβ removal from the brain. There is increasing evidence that sleep plays an important role in Aβ clearance. Here, we tested our hypothesis that PS at night can stimulate Aβ clearance from the brain more effectively than PS during the day. Our results on healthy mice show that Aβ clearance from the brain occurs faster at night than during wakefulness. The PS course at night improves memory and reduces Aβ accumulation in the brain of AD mice more effectively than the PS course during the day. Our results suggest that night PS is a more promising candidate as an effective method in preventing AD than daytime PS. These data are an important informative platform for the development of new noninvasive and nonpharmacological technologies for AD therapy as well as for preventing Aβ accumulation in the brain of people with disorder of Aβ metabolism, sleep deficit, elderly age, and jet lag.


2019 ◽  
Vol 1 (2) ◽  
pp. 35-42 ◽  
Author(s):  
A. A. Pilipovich ◽  
A. B. Danilov

Alzheimer's disease (AD) is a progressive neurodegenerative disease that is the most common cause of dementia. Currently, there are about 46.8 million people with asthma in the world. It is believed that the number of patients with BA doubles almost every 20 years, and the issue of timely treatment and prolongation of the active life of these patients is becoming ever more acute. Nowdays only five drugs have been approved for the treatment of asthma, they include cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists (memantine). Unfortunately, their use provides tempora/y and incomplete symptomatic effect, can be accompanied by side effects and does not shw down the progression of asthma, therefore the development of drugs for more effective treatment of asthma is extremely important. Laboratory and clinical studies suggest that in the near future, AD-therapy will become more focused on disease modification and it is likely that AD will be successfully treated even before significant cognitive impairment develops, at the presymptom-atic or preclinical stages. The main therapeutic goal of these studies is the treatment of the pathological process (reduction of β-amyloidosis or reduction of the formation of neurofibrillaiy tangles) to prevent subsequent neurodegeneration and possible cognitive decline. Currently, despite all sorts of problems, immunotherapy with the introduction of monoclonal antibodies to β-amyloid is considered one of the most promising approaches to reducing the degree of neurodegeneration.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Daniela L. Krause ◽  
Norbert Müller

Neuroinflammation has been implicated in the pathology of Alzheimer's disease (AD) for decades. Still it has not been fully understood when and how inflammation arises in the course of AD. Whether inflammation is an underling cause or a resulting condition in AD remains unresolved. Mounting evidence indicates that microglial activation contributes to neuronal damage in neurodegenerative diseases. However, also beneficial aspects of microglial activation have been identified. The purpose of this review is to highlight new insights into the detrimental and beneficial role of neuroinflammation in AD. It is our intention to focus on newer controversies in the field of microglia activation. Precisely, we want to shed light on whether neuroinflammation is associated to brain tissue damage and functional impairment or is there also a damage limiting activity. In regard to this, we discuss the limitations and the advantages of anti-inflammatory treatment options and identify what future implications might result from this underling neuroinflammation for AD therapy.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


Author(s):  
Zeba Firdaus ◽  
Tryambak Deo Singh

: Alzheimer’s disease (AD) is an age-associated nervous system disorder and a leading cause of dementia worldwide. Clinically it is described by cognitive impairment, and pathophysiologically by deposition of amyloid plaques and neurofibrillary tangles in the brain and neurodegeneration. This article reviews the pathophysiology, course of neuronal degeneration, and the various possible hypothesis of AD progression. These hypotheses include amyloid cascade, tau hyperphosphorylation, cholinergic disruption, metal dysregulation, vascular dysfunction, oxidative stress, and neuroinflammation. There is an exponential increase in the occurrence of the AD in recent few years that indicate an urgent need to develop some effective treatment. Currently, only 2 classes of drugs are available for AD treatment namely acetylcholinesterase inhibitor and NMDA receptor antagonist. Since AD is a complex neurological disorder and these drugs use a single target approach, alternatives are needed due to limited effectiveness and unpleasant side-effects of these drugs. Currently, plants have been used for drug development research especially because of their multiple sites of action and fewer side effects. Uses of some herbs and phytoconstituents for the management of neuronal disorders like AD have been documented in this article. Phytochemical screening of these plants shows the presence of many beneficial constituents like flavonoids, triterpenes, alkaloids, sterols, polyphenols, and tannins. These compounds show a wide array of pharmacological activities such as anti-amyloidogenic, anticholinesterase, and antioxidant. This article summarizes the present understanding of AD progression and gathers biochemical evidence from various works on natural products that can be useful in the management of this disease.


Sign in / Sign up

Export Citation Format

Share Document