scholarly journals TRIMming Down Hormone-Driven Cancers: The Biological Impact of TRIM Proteins on Tumor Development, Progression and Prognostication

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1517
Author(s):  
Eleonora Pauletto ◽  
Nils Eickhoff ◽  
Nuno A. Padrão ◽  
Christine Blattner ◽  
Wilbert Zwart

The tripartite motif (TRIM) protein family is attracting increasing interest in oncology. As a protein family based on structure rather than function, a plethora of biological activities are described for TRIM proteins, which are implicated in multiple diseases including cancer. With hormone-driven cancers being among the leading causes of cancer-related death, TRIM proteins have been described to portrait tumor suppressive or oncogenic activities in these tumor types. This review describes the biological impact of TRIM proteins in relation to hormone receptor biology, as well as hormone-independent mechanisms that contribute to tumor cell biology in prostate, breast, ovarian and endometrial cancer. Furthermore, we point out common functions of TRIM proteins throughout the group of hormone-driven cancers. An improved understanding of the biological impact of TRIM proteins in cancer may pave the way for improved prognostication and novel therapeutics, ultimately improving cancer care for patients with hormone-driven cancers.

2017 ◽  
Vol 23 (32) ◽  
pp. 4893-4905 ◽  
Author(s):  
Elena Voronov ◽  
Ron N. Apte

The importance of anti-tumor immunity in the outcome of cancer is now unequivocally established and recent achivements in the field have stimulated the development of new immunotherapeutical approaches. In invasive tumors, widespread inflammation promotes invasiveness and concomitantly also inhibits anti-tumor immune responses. We suggest that efficient tumor treatment should target both the malignant cells and the tumor microenvironment. Interleukin-1 (IL-1) is a pro-inflammatory as well as an immunostimulatory cytokine that is abundant in the tumor microenvironment. Manipulation of IL-1 can thus serve as an immunotherapeutical approach to reduce inflammation/immunosuppression and thus enhance anti-tumor immunity. The two major IL-1 agonistic molecules are IL-1α and IL-1β, which bind to the same IL-1 signaling receptor and induce the same array of biological activities. The IL-1 receptor antagonist (IL-Ra) is a physiological inhibitor of IL-1 that binds to its receptor without transmition of activation signals and thus serves as a decoy target. We have demonstrated that IL-1α and IL-1β are different in terms of the producing cells and their compartmentalization and the amount. IL-1α is mainly expressed intracellularly, in the cytosol, in the nucleus or exposed on the cell membrane, however, it is rarely secreted. IL-1β is active only as a secreted molecule that is mainly produced by activated myeloid cells. We have shown different functions of IL-1α and IL-1β in the malignant process. Thus, in its membrane- associated form, IL-1α is mainly immunostimulatory, while IL-1β that is secreted into the tumor microenvironment is mainly pro-inflammatory and promotes tumorigenesis, tumor invasiveness and immunosuppression. These distinct functions of the IL-1 agonistic molecules are mainly manifested in early stages of tumor development and the patterns of their expression dictate the direction of the malignant process. Here, we suggest that IL-1 modulation can serve as an effective mean to tilt the balance between inflammation and immunity in tumor sites, towards the latter. Different agents that neutralize IL-1, mainly the IL-Ra and specific antibodies, exist. They are safe and FDA-approved. The IL-1Ra has been widely and successfully used in patients with Rheumatoid arthritis, autoinflammatory diseases and various other diseases that have an inflammatory component. Here, we provide the rationale and experimental evidence for the use of anti-IL-1 agents in cancer patients, following first line therapy to debulk the major tumor's mass. The considerations and constraints of using anti-IL-1 treatments in cancer are also discussed. We hope that this review will stimulate studies that will fasten the application of IL-1 neutralization at the bedside of cancer patients.


2020 ◽  
Vol 17 (9) ◽  
pp. 1102-1116
Author(s):  
Sudip Kumar Mandal ◽  
Utsab Debnath ◽  
Amresh Kumar ◽  
Sabu Thomas ◽  
Subhash Chandra Mandal ◽  
...  

Background and Introduction: Sesquiterpene lactones are a class of secondary metabolite that contains sesquiterpenoids and lactone ring as pharmacophore moiety. A large group of bioactive secondary metabolites such as phytopharmaceuticals belong to this category. From the Asteraceae family-based medicinal plants, more than 5,000 sesquiterpene lactones have been reported so far. Sesquiterpene lactone-based pharmacophore moieties hold promise for broad-spectrum biological activities against cancer, inflammation, parasitic, bacterial, fungal, viral infection and other functional disorders. Moreover, these moiety based phytocompounds have been highlighted with a new dimension in the natural drug discovery program worldwide after the 2015 Medicine Nobel Prize achieved by the Artemisinin researchers. Objective: These bitter substances often contain an α, β-unsaturated-γ-lactone as a major structural backbone, which in recent studies has been explored to be associated with anti-tumor, cytotoxic, and anti-inflammatory action. Recently, the use of sesquiterpene lactones as phytomedicine has been increased. This study will review the prospect of sesquiterpene lactones against inflammation and cancer. Methods: Hence, we emphasized on the different features of this moiety by incorporating its structural diversity on biological activities to explore structure-activity relationships (SAR) against inflammation and cancer. Results: How the dual mode of action such as anti-inflammatory and anti-cancer has been exhibitedby these phytopharmaceuticals will be forecasted in this study. Furthermore, the correlation of anti-inflammatory and anti-cancer activity executed by the sesquiterpene lactones for fruitful phytotherapy will also be revealed in the present review in the milieu of pharmacophore activity relation and pharmacodynamics study as well. Conclusion: So, these metabolites are paramount in phytopharmacological aspects. The present discussion on the future prospect of this moiety based on the reported literature could be a guide for anti-inflammatory and anti-cancer drug discovery programs for the upcoming researchers.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 325
Author(s):  
Petra Korać ◽  
Mariastefania Antica ◽  
Maja Matulić

MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has numerous additional roles in the differentiation process of different cell types, protection from stress and chromatin remodulation. One of the most investigated tissues is the brain, where its downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be discovered, as well as the possibilities of its use as a specific biotherapeutic.


2018 ◽  
pp. 103-116
Author(s):  
Simon P. Langdon ◽  
John F. Smyth

2021 ◽  
Author(s):  
Qiaochu Wei ◽  
Jiming Shen ◽  
Dongni Wang ◽  
Xu Han ◽  
Jing Shi ◽  
...  

Abstract Background: Flap endonuclease 1 (FEN1) is a structure-specific nuclease that plays a role in a variety of DNA metabolism processes. FEN1 is important for maintaining genomic stability and regulating cell growth and development. It is associated with the occurrence and development of several diseases, especially cancers. There is a lack of systematic bibliometric analyses focusing on research trends and knowledge structures related to FEN1.Purpose: To analyze hotspots, the current state and research frontiers performed for FEN1 over the past 15 years. Methods: Publications were retrieved from the Web of Science Core Collection (WoSCC) database, analyzing publication dates ranging from 2005 to 2019. VOSviewer1.6.15 and Citespace5.7 R1 were used to perform a bibliometric analysis in terms of countries, institutions, authors, journals and research areas related to FEN1. A total of 421 publications were included in this analysis. Results: Our findings indicated that FEN1 has received more attention and interest from researchers in the past 15 years. Institutes in the United States, specifically the Beckman Research Institute of City of Hope published the most research related to FEN1. SHEN BH,ZHENG L and BAMBARA RA were the most active researchers investigating this endonuclease and most of this research was published in the Journal of Biological Chemistry. The main scientific areas of FEN1 were related to biochemistry, molecular biology,cell biology,genetics and oncology. Research hotspots included biological activities, DNA metabolism mechanisms, protein-protein interactions and gene mutations. Research frontiers included oxidative stress, phosphorylation and tumor progression and treatment. Conclusion: This bibliometric study may aid researchers in the understanding of the knowledge base and research frontiers associated with FEN1. In addition, emerging hotspots for research can be used as the subjects of future studies.


2019 ◽  
Vol 16 (32) ◽  
pp. 214-227
Author(s):  
Rebeca CAPARICA ◽  
Erica Aparecida ROZISCA ◽  
Julio César MACENA ◽  
Laís de Almeida CAMPOS ◽  
Diana Fortkamp GRIGOLETTO

Melatonin was discovered by Lerner and Coworkers in 1958, and is the main product secreted by the pineal gland. It is a phylogenetically highly conserved molecule and one of the oldest biological signaling mechanisms. It presents several biological functions, among them the most studied is the regulation of the sleep cycle and wakefulness. In addition, melatonin acts as an immunomodulatory, antioxidant molecule and has anticarcinogenic potential. It also participates in the regulation of mood and control of seasonal reproduction. Melatonin is a potent free radical scavenger and several of its metabolites have the ability to remove singlet oxygen, superoxide radicals, hydroperoxides, hydroxyl radicals and radical lipid peroxides. It easily penetrates cell membranes by being soluble in aqueous and organic media, playing a key role in cell biology. Although their activities are interesting for therapy, their low availability, short half-life, and rapid metabolism restrict their use. In this sense, nanotechnology is a tool that has been studied for the elaboration of systems that improve the pharmacokinetic and pharmacodynamic characteristics of melatonin, in order to potentiate its application in biological models. This review summarizes several studies published in recent years that have shown the most numerous biological activities of melatonin and the improvement of their therapeutic potential through nanotechnology.


2021 ◽  
Vol 15 (2) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Elin Schoultz and Ellen Johansson are co-first authors on ‘ Tissue architecture delineates field cancerization in BrafV600E-induced tumor development’, published in DMM. Elin is an MD, PhD student in the lab of Mikael Nilsson at Sahlgrenska Centre for Cancer Research, Gothenburg University, Gothenburg. She has a great interest in the thyroid gland in particular, and the mechanisms of tumor development, progression and treatment associated with epithelial carcinomas in general. Ellen is an MD, resident physician in oto-rhino-laryngology and postdoctoral researcher in the lab of Karin Roberg at Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, with broad interest the thyroid gland, tumors of the head and neck region, and the molecular mechanisms that are important for tumor initiation, development, and treatment.


2009 ◽  
Vol 18 (5-6) ◽  
pp. 677-682 ◽  
Author(s):  
Yoshitaka Miyamoto ◽  
Takeshi Ikeya ◽  
Shin Enosawa

Three-dimensional culture procedures have attracted attention in various fields of cell biology. A newly developed cell array assisted in the formation of hepatocyte spheroids by two innovations: 1) micropatterning by a hydrophilic polymer, and 2) the use of bovine carotid artery-derived HH cells as feeder cells. The former contributes to the standardization of the spheroid size and the latter to the maintenance of the spheroids. We created a way to provide a ready-to-use cell array by cryopreservation of an HH feeder cell cultured array. After inoculation of HH cells on the cell array, the culture medium was replaced by freezing medium containing dimethyl sulfoxide. Thereafter, the array was frozen and stored in a −80°C deep freezer. At the start of the hepatocyte culture, the cryopreserved HH cell array was thawed by adding warmed (37°C) culture medium. The morphology and biological activities of the cryopreserved HH cells were intact, as confirmed by phase contrast microscopy and functional staining with calcein and formazan. The rat hepatocytes formed perfect spheroids on the cryopreserved HH cell array without any differences from those on the freshly prepared HH cell array. The CYP3A drug metabolism activities of the hepatocytes were well maintained on the cryopreserved and fresh cell arrays. The present protocol greatly shortened the time and labor required to prepare a cell array for culturing hepatocytes.


Sign in / Sign up

Export Citation Format

Share Document