scholarly journals Phosphorylation in the Charged Linker Modulates Interactions and Secretion of Hsp90β

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1701
Author(s):  
Lorenz Weidenauer ◽  
Manfredo Quadroni

Hsp90β is a major chaperone involved in numerous cellular processes. Hundreds of client proteins depend on Hsp90β for proper folding and/or activity. Regulation of Hsp90β is critical to coordinate its tasks and is mediated by several post-translational modifications. Here, we focus on two phosphorylation sites located in the charged linker region of human Hsp90β, Ser226 and Ser255, which have been frequently reported but whose function remains unclear. Targeted measurements by mass spectrometry indicated that intracellular Hsp90β is highly phosphorylated on both sites (>90%). The level of phosphorylation was unaffected by various stresses (e.g., heat shock, inhibition with drugs) that impact Hsp90β activity. Mutating the two serines to alanines increased the amount of proteins interacting with Hsp90β globally and increased the sensitivity to tryptic cleavage in the C-terminal domain. Further investigation revealed that phosphorylation on Ser255 and to a lesser extent on Ser226 is decreased in the conditioned medium of cultured K562 cells, and that a non-phosphorylatable double alanine mutant was secreted more efficiently than the wild type. Overall, our results show that phosphorylation events in the charged linker regulate both the interactions of Hsp90β and its secretion, through changes in the conformation of the chaperone.

2020 ◽  
Author(s):  
Manish Bhattacharjee ◽  
Navin Adhikari ◽  
Renu Sudhakar ◽  
Zeba Rizvi ◽  
Divya Das ◽  
...  

ABSTRACTA variety of post-translational modifications of Plasmodium falciparum proteins, including phosphorylation and ubiquitination, are shown to have key regulatory roles. The neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) is a ubiquitin-like modifier of cullin-RING E3 ubiquitin ligases, which regulate diverse cellular processes, including the cell-cycle. Although neddylation pathway is conserved in eukaryotes, it is yet to be characterized in Plasmodium and related apicomplexan parasites. Towards studying the neddylation pathway in malaria parasites, we characterized P. falciparum NEDD8 (PfNEDD8) and identified cullins as its physiological substrates. PfNEDD8 is a 76 amino acid residue protein without the C-terminal tail, indicating that it can be readily conjugated. The wild type and mutant (Gly75Gly76 mutated to Ala75Ala76) PfNEDD8 were expressed in P. falciparum. Western blot of wild type PfNEDD8-expressing parasites indicated multiple high molecular weight conjugates, which were absent in the parasites expressing the mutant, indicating conjugation of NEDD8 to proteins through Gly76. Immunoprecipitation followed by mass spectrometry of wild type PfNEDD8-expressing parasites identified several proteins, including two putative cullins. Furthermore, we expressed PfNEDD8 in mutant S. cerevisiae strains that lacked endogenous NEDD8 (Δrub1) or NEDD8 conjugating E2 enzyme (ΔUbc12). The western blot of complemented strains and mass spectrometry of PfNEDD8 immunoprecipitate showed conjugation of PfNEDD8 to S. cerevisiae cullin cdc53, demonstrating functional conservation and cullins as the physiological substrates of PfNEDD8. The characterization of PfNEDD8 and identification of cullins as its substrates make ground for investigation of specific roles and drug target potential of neddylation pathway in malaria parasites.


2015 ◽  
Author(s):  
Dimitrios Vlachakis ◽  
Elena Bencurova ◽  
Mangesh Bhide ◽  
Sophia Kossida

Protein phosphorylation is one of the most important protein post-translational modifications and plays a role in numerous cellular processes including recognition, signaling and degradation. It can be studied experimentally by various methodologies, like employing western blot analysis, site-directed mutagenesis, 2 D gel electrophoresis, mass spectrometry etc. A number of in silico tools have also been developed in order to predict plausible phosphorylation sites in a given protein. In this review, we conducted a benchmark study including the leading protein phosphorylation prediction software, in an effort to determine which performs best. The first place was taken by GPS 2.2, having predicted all phosphorylation sites with a 83% fidelity while in second place came NetPhos 2.0 with 69%.


2015 ◽  
Author(s):  
Dimitrios Vlachakis ◽  
Elena Bencurova ◽  
Mangesh Bhide ◽  
Sophia Kossida

Protein phosphorylation is one of the most important protein post-translational modifications and plays a role in numerous cellular processes including recognition, signaling and degradation. It can be studied experimentally by various methodologies, like employing western blot analysis, site-directed mutagenesis, 2 D gel electrophoresis, mass spectrometry etc. A number of in silico tools have also been developed in order to predict plausible phosphorylation sites in a given protein. In this review, we conducted a benchmark study including the leading protein phosphorylation prediction software, in an effort to determine which performs best. The first place was taken by GPS 2.2, having predicted all phosphorylation sites with a 83% fidelity while in second place came NetPhos 2.0 with 69%.


2003 ◽  
Vol 369 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Xiang Y. LIU ◽  
Teah L. WITT ◽  
Larry H. MATHERLY

The reduced folate carrier (RFC; SLC19A1) is closely related to the thiamine transporter, SLC19A2 (ThTr1). Hydropathy models for these homologous transporters predict up to 12 transmembrane domains (TMDs), with internally oriented N- and C-termini and a large central loop between TMDs 6 and 7. The homologies are localized mostly in the TMDs. However, there is little similarity in their N- and C-terminal domains and the central peptide linkers connecting putative TMDs 1—6 and TMDs 7—12. To explore the functional role of the 61-amino acid central linker in the human RFC (hRFC), we introduced deletions of 49 and 60 amino acids into this region, differing by the presence of a stretch of 11 highly conserved amino acids between the human and rodent RFCs (positions 204—214). An additional hRFC construct was prepared in which only the 11 conserved amino acids were deleted. The resulting hRFCD215—R263Δ, hRFCK204—R263Δ and hRFCK204—R214Δ proteins were transfected into transport-impaired K562 cells. The deletion constructs were all expressed in plasma membranes; however, they were completely inactive for methotrexate and (6S)5-formyl tetrahydrofolate transport. Insertion of non-homologous 73- and 84-amino acid fragments from the structurally analogous ThTr1 linker region into position 204 of hRFCK204—R263Δ restored low levels of transport (16—21% of the wild type). Insertion of the ThTr1 linkers into hRFCD215—R263Δ at position 215 restored 60—80% of wild-type levels of transport. Collectively, our results suggest that the role of the hRFC linker peptide is to provide the proper spatial orientation between the two halves of the hRFC protein for optimal function, and that this is largely independent of amino acid sequence. Our results also demonstrate a critical transport role for the stretch of 11 conserved amino acids starting at position 204 of hRFC.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manish Bhattacharjee ◽  
Navin Adhikari ◽  
Renu Sudhakar ◽  
Zeba Rizvi ◽  
Divya Das ◽  
...  

AbstractA variety of post-translational modifications of Plasmodium falciparum proteins, including phosphorylation and ubiquitination, are shown to have key regulatory roles during parasite development. NEDD8 is a ubiquitin-like modifier of cullin-RING E3 ubiquitin ligases, which regulates diverse cellular processes. Although neddylation is conserved in eukaryotes, it is yet to be characterized in Plasmodium and related apicomplexan parasites. We characterized P. falciparum NEDD8 (PfNEDD8) and identified cullins as its physiological substrates. PfNEDD8 is a 76 amino acid residue protein without the C-terminal tail, indicating that it can be readily conjugated. The wild type and mutant (Gly75Ala/Gly76Ala) PfNEDD8 were expressed in P. falciparum. Western blot of wild type PfNEDD8-expressing parasites indicated multiple high molecular weight conjugates, which were absent in the parasites expressing the mutant, indicating conjugation of NEDD8 through Gly76. Immunoprecipitation followed by mass spectrometry of wild type PfNEDD8-expressing parasites identified two putative cullins. Furthermore, we expressed PfNEDD8 in mutant S. cerevisiae strains that lacked endogenous NEDD8 (rub1Δ) or NEDD8 conjugating E2 enzyme (ubc12Δ). The PfNEDD8 immunoprecipitate also contained S. cerevisiae cullin cdc53, further substantiating cullins as physiological substrates of PfNEDD8. Our findings lay ground for investigation of specific roles and drug target potential of neddylation in malaria parasites.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Tony Ly ◽  
Arlene Whigham ◽  
Rosemary Clarke ◽  
Alejandro J Brenes-Murillo ◽  
Brett Estes ◽  
...  

The temporal regulation of protein abundance and post-translational modifications is a key feature of cell division. Recently, we analysed gene expression and protein abundance changes during interphase under minimally perturbed conditions (Ly et al., 2014, 2015). Here, we show that by using specific intracellular immunolabelling protocols, FACS separation of interphase and mitotic cells, including mitotic subphases, can be combined with proteomic analysis by mass spectrometry. Using this PRIMMUS (PRoteomic analysis of Intracellular iMMUnolabelled cell Subsets) approach, we now compare protein abundance and phosphorylation changes in interphase and mitotic fractions from asynchronously growing human cells. We identify a set of 115 phosphorylation sites increased during G2, termed ‘early risers’. This set includes phosphorylation of S738 on TPX2, which we show is important for TPX2 function and mitotic progression. Further, we use PRIMMUS to provide the first a proteome-wide analysis of protein abundance remodeling between prophase, prometaphase and anaphase.


2017 ◽  
Author(s):  
Tony Ly ◽  
Arlene Whigham ◽  
Rosemary Clarke ◽  
Alejandro Brenes-Murillo ◽  
Brett Estes ◽  
...  

AbstractThe temporal regulation of protein abundance and post-translational modifications is a key feature of cell division. Recently, we analysed gene expression and protein abundance changes during interphase under minimally perturbed conditions (Ly et al. 2014; Ly et al. 2015). Here we show that by using specific intracellular immunolabeling protocols, FACS separation of interphase and mitotic cells, including mitotic subphases, can be combined with proteomic analysis by mass spectrometry. Using this PRIMMUS (PRoteomic analysis of Intracellular iMMUnolabeled cell Subsets) approach, we now compare protein abundance and phosphorylation changes in interphase and mitotic fractions from asynchronously growing human cells. We identify a set of 115 phosphorylation sites increased during G2, which we term ‘early risers’. This set includes phosphorylation of S738 on TPX2, which we show is important for TPX2 function and mitotic progression. Further, we use PRIMMUS to provide a proteome-wide analysis of protein abundance remodeling between prophase, prometaphase and anaphase.


2019 ◽  
Vol 20 (17) ◽  
pp. 4122 ◽  
Author(s):  
Velasco ◽  
Dublang ◽  
Moro ◽  
Muga

Proteins must fold into their native structure and maintain it during their lifespan to display the desired activity. To ensure proper folding and stability, and avoid generation of misfolded conformations that can be potentially cytotoxic, cells synthesize a wide variety of molecular chaperones that assist folding of other proteins and avoid their aggregation, which unfortunately is unavoidable under acute stress conditions. A protein machinery in metazoa, composed of representatives of the Hsp70, Hsp40, and Hsp110 chaperone families, can reactivate protein aggregates. We revised herein the phosphorylation sites found so far in members of these chaperone families and the functional consequences associated with some of them. We also discuss how phosphorylation might regulate the chaperone activity and the interaction of human Hsp70 with its accessory and client proteins. Finally, we present the information that would be necessary to decrypt the effect that post-translational modifications, and especially phosphorylation, could have on the biological activity of the Hsp70 system, known as the “chaperone code”.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010123
Author(s):  
Zhenshan Liu ◽  
Chengrong Liu ◽  
Xin Wang ◽  
Wenwei Li ◽  
Jingfan Zhou ◽  
...  

RSK1, a downstream kinase of the MAPK pathway, has been shown to regulate multiple cellular processes and is essential for lytic replication of a variety of viruses, including Kaposi’s sarcoma-associated herpesvirus (KSHV). Besides phosphorylation, it is not known whether other post-translational modifications play an important role in regulating RSK1 function. We demonstrate that RSK1 undergoes robust SUMOylation during KSHV lytic replication at lysine residues K110, K335, and K421. SUMO modification does not alter RSK1 activation and kinase activity upon KSHV ORF45 co-expression, but affects RSK1 downstream substrate phosphorylation. Compared to wild-type RSK1, the overall phosphorylation level of RxRxxS*/T* motif is significantly declined in RSK1K110/335/421R expressing cells. Specifically, SUMOylation deficient RSK1 cannot efficiently phosphorylate eIF4B. Sequence analysis showed that eIF4B has one SUMO-interacting motif (SIM) between the amino acid position 166 and 170 (166IRVDV170), which mediates the association between eIF4B and RSK1 through SUMO-SIM interaction. These results indicate that SUMOylation regulates the phosphorylation of RSK1 downstream substrates, which is required for efficient KSHV lytic replication.


2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


Sign in / Sign up

Export Citation Format

Share Document