scholarly journals Irradiation Suppresses IFNγ-Mediated PD-L1 and MCL1 Expression in EGFR-Positive Lung Cancer to Augment CD8+ T Cells Cytotoxicity

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2515
Author(s):  
Chun-I. Wang ◽  
Yi-Fang Chang ◽  
Zong-Lin Sie ◽  
Ai-Sheng Ho ◽  
Jung-Shan Chang ◽  
...  

Tumor cells express immune checkpoints to exhaust CD8+ T cells. Irradiation damages tumor cells and augments tumor immunotherapy in clinical applications. However, the radiotherapy-mediated molecular mechanism affecting CD8+ T cell activity remains elusive. We aimed to uncover the mechanism of radiotherapy augmenting cytotoxic CD8+ T cells in non-small-cell lung cancer (NSCLC). EGFR-positive NSCLC cell lines were co-cultured with CD8+ T cells from healthy volunteers. Tumor cell viability and apoptosis were consequently measured. IFNγ was identified secreted by CD8+ T cells and PBMCs. Therefore, RNAseq was used to screen the IFNγ-mediated gene expression in A549 cells. The irradiation effect to IFNγ-mediated gene expression was investigated using qPCR and western blots. We found that the co-culture of tumor cells stimulated the increase of granzyme B and IFNγ in CD8+ T, but A549 exhibited resistance against CD8+ T cytotoxicity compared to HCC827. Irradiation inhibited A549 proliferation and enhanced apoptosis, augmenting PBMCs-mediated cytotoxicity against A549. We found that IFNγ simultaneously increased phosphorylation on STAT1 and STAT3 in EGFR-positive lung cancer, resulting in overexpression of PD-L1 (p < 0.05). In RNAseq analysis, MCL1 was identified and increased by the IFNγ-STAT3 axis (p < 0.05). We demonstrated that irradiation specifically inhibited phosphorylation on STAT1 and STAT3 in IFNγ-treated A549, resulting in reductions of PD-L1 and MCL1 (both p < 0.05). Moreover, knockdowns of STAT3 and MCL1 increased the PBMCs-mediated anti-A549 effect. This study demonstrated that A549 expressed MCL1 to resist CD8+ T cell-mediated tumor apoptosis. In addition, we found that irradiation suppressed IFNγ-mediated STAT3 phosphorylation and PD-L1 and MCL1 expression, revealing a potential mechanism of radiotherapy augmenting immune surveillance.

2021 ◽  
Author(s):  
Chun-I Wang ◽  
Yi-Fang Chang ◽  
Zong-Lin Sie ◽  
Ai-Sheng Ho ◽  
Chun-Chia Cheng

Abstract Background Tumor cells progress to evade immunological attacks and prohibit activity of CD8+ T cells. Irradiation damages tumor cells and augments tumor immunotherapy in clinical application. However, the detail mechanism remains elusive. We aimed to uncover the mechanism of irradiation augmenting cytotoxic CD8+ T cells to suppress tumor progression in non-small-cell lung cancer (NSCLC). Methods EGFR-positive NSCLC cell lines were co-cultured with isolated PBMCs from healthy volunteers, cell viability and apoptosis were measured. RNAseq was used to screen the IFNγ-mediated gene expression in A549 cells. Irradiation was used to augment PBMCs-mediated anti-tumor effect and the irradiation effect to IFNγ-mediated gene expression was investigated using qPCR and Western blots. Results Co-culture of tumor cells stimulates increase of granzyme B and IFNγ in CD8+ T, but A549 exhibits resistance against CD8+ T cytotoxicity. Irradiation inhibits A549 proliferation and enhances apoptosis, augmenting PBMCs-mediated cytotoxicity against A549. IFNγ simultaneously increased phosphorylation on STAT1 and STAT3 in EGFR-positive lung cancer, resulting in overexpression of PD-L1. In RNAseq analysis, MCL1 was identified and increased by IFNγ-STAT3 axis in A549 cells, we found that irradiation specifically inhibits phosphorylation on STAT1 and STAT3 in IFNr-treated A549, resulting in reductions of PD-L1 and MCL1. Moreover, knockdowns of STAT3 and MCL1 increased PBMCs against irradiated A549 cells. Conclusion This study demonstrated that A549 expressed MCL1 against CD8+ T cell-mediated apoptosis. In addition, we found that irradiation suppressed STAT3 phosphorylation and IFNγ-mediated PD-L1 and MCL1 expression, revealing a potential mechanism of irradiation augmenting immune surveillance.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A560-A560
Author(s):  
Andrew Chow ◽  
Sara Schad ◽  
Michael Green ◽  
Matthew Hellmann ◽  
Nicholas Ceglia ◽  
...  

BackgroundMalignant pleural effusions and peritoneal carcinomatosis are associated with poor outcomes in patients with cancer.1–3 Macrophages in these serous body cavities express the phosphatidylserine receptor Tim-4.4–8 Prior reports demonstrated that Tim-4 abrogation is associated with improved anti-tumor activity.9–11 Whether macrophages expressing Tim-4 contribute to immunosuppression in the serous body cavities has not been previously investigated.MethodsWe retrospectively annotated sites of metastases in 500 patients with lung cancer and assessed for clinical outcomes. Utilizing a combination of flow cytometry, immunohistochemistry, and antibody biodistribution assays, we surveyed for Tim-4 expression across various tissues and cell types. We performed flow cytometry on 55 consecutive pleural and peritoneal effusions from patients with lung cancer. We utilized murine models of peritoneal carcinomatosis to determine whether Tim-4 abrogation could enhance the anti-tumor efficacy of anti-PD-1 therapy. We characterized CD8+ T cells with high levels of phosphatidylserine (PShigh) with flow cytometry, cytotoxicity assays, and paired single cell RNA and TCR sequencing. Confocal microscopy was utilized to visualize interactions between Tim-4+ macrophages and PShigh CD8+ T cells.ResultsMetastatic disease involvement of the pleural or peritoneal cavity was associated with reduced response rate and progression-free and overall survival. We demonstrate that Tim-4 is highly expressed on pleural and peritoneal macrophages and other select resident macrophages, but not on monocytes, tumor-associated macrophages, or tumor cells in mice and humans. High levels of Tim-4 on macrophages from fluid biospecimens is associated with reduced levels CD39+ CD8+ T cells, which comprise the tumor-reactive portion of CD8+ T lymphocytes. In order to further elucidate the mechanism of Tim-4+ macrophage-mediated immunosuppression, we established a murine model of peritoneal carcinomatosis with MC38 and CT26 colon carcinoma. Genetic or pharmacologic abrogation of Tim-4 improved the efficacy of anti-PD-1 therapy and was associated with enhanced CD39+ CD8+ T cell numbers. In parallel, we observed in mice and humans that CD8+ T cell activation results in PS upregulation despite not undergoing cell death. PShigh CD8+ T cells expressed genes associated with cytotoxicity, activation/exhaustion, and proliferation, and mediated greater cytotoxicity. Mechanistic studies revealed that Tim-4 mediates sequestration of PShigh CD8+ T cells by macrophages which subsequently impedes CD8+ T cell cytotoxicity of tumor cells.Abstract 524 Figure 1After activation by antigen-presenting cells in the lymph nodes, viable CD8+ T cells express high levels of phosphatidylserine, which coincides with a highly proliferative and cytotoxic state. As they migrate towards tumors cells in the serous body cavities, they are sequestered by Tim-4+ resident macrophages which impede their anti-tumor cytotoxicity. Tim-4 abrogation can alleviate this sequestration and enhance anti-tumor immunityConclusionsWe demonstrate that Tim-4+ resident macrophages impair anti-tumor CD8+ T cell immunity in the serous body cavities and Tim-4 blockade represents on a novel therapeutic strategy to overcome resistance to immune checkpoint blockade (figure 1).Ethics ApprovalThe retrospective clinical analysis was approved by Memorial Sloan Kettering Cancer Center IRB #16-1566. The human biospecimen analyses were approved by Memorial Sloan Kettering Cancer Center IRB #06-107 and 14-091.ReferencesPorcel JM, et al., Clinical features and survival of lung cancer patients with pleural effusions. Respirology 2015;20:654–659.Donnenberg AD, Luketich JD, Dhupar R, Donnenberg VS. Treatment of malignant pleural effusions: the case for localized immunotherapy. J Immunother Cancer 2019;7:110.Morano WF, et al., Intraperitoneal immunotherapy: historical perspectives and modern therapy. Cancer Gene Ther 2016;23:373–381.Bain CC, et al., Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nat Commun 2016;7:ncomms11852.Wong K, et al., Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proc Natl Acad Sci U S A 2010;107:8712–8717.Miyanishi M, et al., Identification of Tim4 as a phosphatidylserine receptor. Nature 2007;450:435–439.Rodriguez-Manzanet R, et al. T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc Natl Acad Sci U S A 2010;107:8706–8711.Kobayashi N, et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 2007;27:927–940.LD Cunha et al. LC3-Associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 2018;175:429–441 e416.Baghdadi M, et al, TIM-4 glycoprotein-mediated degradation of dying tumor cells by autophagy leads to reduced antigen presentation and increased immune tolerance. Immunity 2013;39:1070–1081.Baghdadi M, et al. Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas. Cancer Immunol Immunother 2013;62:629–637.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3679-3679 ◽  
Author(s):  
Katayoun Rezvani ◽  
Agnes Yong ◽  
Stephan Mielke ◽  
Bipin N. Savani ◽  
David A. Price ◽  
...  

Abstract There is clinical evidence that a graft-versus-leukemia (GVL) effect occurs following allogeneic stem cell transplantation for acute lymphoblastic leukemia (ALL). However, the potency of this GVL effect is often associated with unwanted graft-versus-host-disease (GVHD) and disease relapse remains a major contributor to treatment failure. Wilms’ tumor gene 1 (WT1) is overexpressed in 70–90% of cases of ALL and has been identified as a convenient minimal residual disease (MRD) marker. WT1 is an attractive immunotherapeutic target in ALL because peptides derived from WT1 can induce CD8+ T-cell responses, and being non-allelic, WT1 would be unlikely to provoke GVHD. We investigated whether CD8+ T-cells directed against an HLA-A*0201 restricted epitope of WT1 (WT126) occur in ALL patients during the early phase of immune reconstitution post-SCT (days 30–180). We analyzed CD8+ T-cell responses against WT1 in 10 HLA-A*0201+ ALL SCT recipients and their respective donors using WT1/HLA-A*0201 tetrameric complexes and flow cytometry for intracellular IFN-gamma. We studied the kinetics WT1-specific CD8+ T-cell responses in consecutive samples obtained post-SCT. CD8+ T-cells recognizing WT1 were detected ex vivo in samples from 5 of 10 ALL patients post-SCT but not in patients pre-SCT. WT1-tetramer+ CD8+ T cells had a predominantly effector memory phenotype (CD45RO+CD27−CD57+). WT1 gene expression in pre-SCT and donor samples was assayed by quantitative real-time PCR (RQ-PCR). WT1 expression in PBMC from healthy donors was significantly lower than in patients (median 0, range 0–66 ×10−4 WT1/ABL compared to patients, median 12, range 0–2275 ×10−4 WT1/ABL) (P < 0.01). There was a strong correlation between the emergence of WT1-specific CD8+ T cells and a reduction in WT1 gene expression (P < 0.001) (as depicted below) suggesting direct anti-ALL activity post-SCT. Disappearance of WT1-specific CD8+ T-cells from the blood coincided with reappearance of WT1 gene transcripts, consistent with a molecular relapse, further supporting the direct involvement of WT1-specific CD8+ T-cells in the GVL response. These results provide evidence for the first time of spontaneous T-cell reactivity against a leukemia antigen in ALL patients. Our results support the immunogenicity of WT1 in ALL patients post-SCT and a potential application for WT1 peptides in post-transplant immunotherapy of ALL. Figure Figure


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2623-2623 ◽  
Author(s):  
Bindu Varghese ◽  
Behnaz Taidi ◽  
Adam Widman ◽  
James Do ◽  
R. Levy

Abstract Introduction: Anti-idiotype antibodies against B cell lymphoma have shown remarkable success in causing tumor regression in the clinic. In addition to their known ability to mediate ADCC, anti-idiotype antibodies have also been shown to directly inhibit the proliferation of tumor cells by sending negative growth signals via the target idiotype. However, further studies to investigate this mechanism have been hindered by the failure of patient tumor cells to grow ex vivo. Methods and Results: In order to study this phenomenon further, we developed an antibody against the idiotype on an A20 mouse B lymphoma cell line. A radioactive thymidine incorporation assay showed decreased A20 cell proliferation in the presence of the anti-id antibody ex vivo. In vivo, when mice were treated intraperitoneally (i.p.) with 100 μg of antibody 3 hours post-tumor inoculation (1×106 A20 subcutaneously (s.c.)), tumor growth was delayed for greater than 40 days after which the tumor began to grow once again. Further analysis of these escaping tumor cells by flow cytometry showed that that the tumor cells escaped the antibody-mediated immune response by down-regulating expression of idiotype and IgG on their surfaces although the cells retained idiotype expression intracellularly. This down-regulation of surface idiotype rendered the tumor cells resistant to both ADCC and signaling-induced cell death. The addition of an immunostimulatory bacterial mimic (CpG-DNA; 100 μg × 5 intratumoral (i.t.) injections; Days 2, 3 4, 6 & 8) to antibody therapy (Day 0; 100 μg i.p.) cured large established tumors (Day 0 = 1 cm2) and prevented the occurrence of tumor escapees (p&lt;0.0001). Antibody plus CpG combination therapy in tumor-bearing mice deficient for CD8+ T cells demonstrated the critical role of CD8+ T cells in A20 tumor eradication (p&lt;0.005). Depletion of CD4+ T cells was found to have no significant impact on the therapy. We also found that when mice were inoculated with two tumors and treated with anti-idiotype antibody (i.p.) followed by intratumoral CpG in just one tumor (Day 0=1 cm2; anti-idiotype antibody 100 μg Day 0; 100 μg CpG Days 2, 3, 4, 6 & 8), untreated tumors regressed just as well as CpG-treated tumors indicating a systemic anti-tumor immune response was generated. Conclusion: Anti-idiotype therapy, although effective in delaying tumor growth, frequently generates antigen-loss variants. However, we found that when anti-idiotype antibodies were combined with CpG, even large established tumors were cured due to systemic CD8+ T cell-dependent tumor immunity. Rather than simply mediating ADCC against a single tumor antigen, which requires the constant infusion of antibody to hamper tumor growth, we hypothesize a cytotoxic T-cell response against many tumor antigens was also generated. Such a diverse T-cell repertoire can prevent the emergence of tumor escapees and collectively provide long-lasting tumor protection. These pre-clinical results suggest that anti-tumor antibodies combined with CpG warrant further study in patients with B cell lymphoma.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2594-2594
Author(s):  
Peter M Szabo ◽  
George Lee ◽  
Scott Ely ◽  
Vipul Baxi ◽  
Harsha Pokkalla ◽  
...  

2594 Background: Distribution patterns of CD8+ T cells within the tumor microenvironment (TME) can be assessed by IA, which may reflect underlying tumor biology and serve as a potential biomarker to assess the utility of I-O therapy. These patterns are variable and may be classified as immune desert (minimal infiltrate), excluded (T cells confined to tumor stroma or to the invasive margin), or inflamed (T cells diffusely infiltrating tumor parenchyma and stroma). We hypothesized that association of a GEP signature with abundance of parenchymal and stromal T-cell infiltrates may identify biomarkers of response or resistance to I-O therapy. To test this, we applied an AI-powered IA platform to quantify CD8+ T cells by geographical location and used GEP to define both CD8 abundance and associated geographic localization to tumor parenchyma and stroma. Methods: We performed an analysis using a tumor inflammatory GEP assay and CD8 immunohistochemistry on procured specimens (335 melanoma, 391 SCCHN). Digitized slides were used to train a convolutional neural network to quantify the number of CD8+ T cells in stroma, tumor parenchyma, parenchyma-stromal interface, and invasive margin. Generalized constrained regression models were used to predict GEP signatures specifically for stromal and parenchymal CD8+ T cells. Results: Parenchymal and stromal GEP scores were highly concordant with CD8+ infiltrate geography (adj- r2: 0.67, 0.65, respectively; P ≤ 0.01). Little overlap existed between gene sets associated with parenchymal and stromal CD8 T-cell geographies. CSF1R and NECTIN2 gene expression was observed to correlate inversely with parenchymal localization and directly with stromal CD8+ T-cell abundance. Conclusions: GEP signatures can be identified that are concordant with various CD8+ T-cell localization patterns in melanoma and SCCHN, demonstrating that GEP-IA can be developed to identify the immune status of interest in the TME. The specific genes identified have potential to elucidate mechanisms of resistance and/or inform I-O targets that can be further evaluated in relation to clinical significance in future studies.


2008 ◽  
Vol 82 (23) ◽  
pp. 11637-11650 ◽  
Author(s):  
Verena Böhm ◽  
Christian O. Simon ◽  
Jürgen Podlech ◽  
Christof K. Seckert ◽  
Dorothea Gendig ◽  
...  

ABSTRACT Cytomegaloviruses express glycoproteins that interfere with antigen presentation to CD8 T cells. Although the molecular modes of action of these “immunoevasins” differ between cytomegalovirus species, the convergent biological outcome is an inhibition of the recognition of infected cells. In murine cytomegalovirus, m152/gp40 retains peptide-loaded major histocompatibility complex class I molecules in a cis-Golgi compartment, m06/gp48 mediates their vesicular sorting for lysosomal degradation, and m04/gp34, although not an immunoevasin in its own right, appears to assist in the concerted action of all three molecules. Using the Ld-restricted IE1 epitope YPHFMPTNL in the BALB/c mouse model as a paradigm, we provide here an explanation for the paradox that immunoevasins enhance CD8 T-cell priming although they inhibit peptide presentation in infected cells. Adaptive immune responses are initiated in the regional lymph node (RLN) draining the site of pathogen exposure. In particular for antigens that are not virion components, the magnitude of viral gene expression providing the antigens is likely a critical parameter in priming efficacy. We have therefore focused on the events in the RLN and have related priming to intranodal viral gene expression. We show that immunoevasins enhance priming by downmodulating an early CD8 T-cell-mediated “negative feedback” control of the infection in the cortical region of the RLN, thus supporting the model that immunoevasins improve antigen supply for indirect priming by uninfected antigen-presenting cells. As an important consequence, these findings predict that deletion of immunoevasin genes in a replicative vaccine virus is not a favorable option but may, rather, be counterproductive.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lihua Luo ◽  
Bing Qin ◽  
Mengshi Jiang ◽  
Lin Xie ◽  
Zhenyu Luo ◽  
...  

Abstract Background Photothermal therapy (PTT) is a highly effective treatment for solid tumors and can induce long-term immune memory worked like an in situ vaccine. Nevertheless, PTT inevitably encounters photothermal resistance of tumor cells, which hinders therapeutic effect or even leads to tumor recurrence. Naïve CD8+ T cells are mainly metabolized by oxidative phosphorylation (OXPHOS), followed by aerobic glycolysis after activation. And the differentiate of effector CD8+ T cell (CD8+ Teff) into central memory CD8+ T cell (CD8+ TCM) depends on fatty acid oxidation (FAO) to meet their metabolic requirements, which is regulated by adenosine monophosphate activated protein kinase (AMPK). In addition, the tumor microenvironment (TME) is severely immunosuppressive, conferring additional protection against the host immune response mediated by PTT. Methods Metformin (Met) down-regulates NADH/NADPH, promotes the FAO of CD8+ T cells by activating AMPK, increases the number of CD8+ TCM, which boosts the long-term immune memory of tumor-bearing mice treated with PTT. Here, a kind of PLGA microspheres co-encapsulated hollow gold nanoshells and Met (HAuNS-Met@MS) was constructed to inhibit the tumor progress. 2-Deoxyglucose (2DG), a glycolysis inhibitor for cancer starving therapy, can cause energy loss of tumor cells, reduce the heat stress response of tumor cell, and reverse its photothermal resistance. Moreover, 2DG prevents N-glycosylation of proteins that cause endoplasmic reticulum stress (ERS), further synergistically enhance PTT-induced tumor immunogenic cell death (ICD), and improve the effect of immunotherapy. So 2DG was also introduced and optimized here to solve the metabolic competition among tumor cells and immune cells in the TME. Results We utilized mild PTT effect of HAuNS to propose an in situ vaccine strategy based on the tumor itself. By targeting the metabolism of TME with different administration strategy of 2DG and perdurable action of Met, the thermotolerance of tumor cells was reversed, more CD8+ TCMs were produced and more effective anti-tumor was presented in this study. Conclusion The Step-by-Step starving-photothermal therapy could not only reverse the tumor thermotolerance, but also enhance the ICD and produce more CD8+ TCM during the treatment. Graphical Abstract


2020 ◽  
Author(s):  
Zhanwei Wang ◽  
Xi Yang ◽  
Jiamin Xu ◽  
Yuefen Pan ◽  
Junjun Shen ◽  
...  

Abstract Objective: This study investigated the gene expression patterns associated with tumor-infiltrating CD4+ and CD8+ T cells in invasive breast carcinomas.Methods: The gene expression data and corresponding clinical phenotype data from the Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) were downloaded. The stromal and immune score were calculated using ESTIMATE. The differentially expressed genes (DEGs) with a high vs. low stromal score and a high vs. low immune score were screened and then functionally enriched. The tumor-infiltrating immune cells were investigated using the Cibersort algorithm, and the CD4+ and CD8+ T cell-related genes were identified using a Spearman correlation test of infiltrating abundance with the DEGs. Moreover, the miRNA-mRNA pairs and lncRNA-miRNA pairs were predicted to construct the competing endogenous RNAs (ceRNA) network. Kaplan-Meier (K-M) survival curves were also plotted.Results: In total, 478 DEGs with a high vs. low stromal score and 796 DEGs with a high vs. low immune score were identified. In addition, 39 CD4+ T cell-related genes and 78 CD8+ T cell-related genes were identified; of these, 14 genes were significantly associated with the prognosis of BRCA patients. Moreover, for CD4+ T cell-related genes, the chr22-38_28785274-29006793.1-–miR-34a/c-5p–CAPN6 axis was identified from the ceRNA network, whereas the chr22-38_28785274-29006793.1–miR-494-3p–SLC9A7 axis was identified for CD8+ T cell-related genes.Conclusions: The chr22-38_28785274-29006793.1-–miR-34a/c-5p–CAPN6 axis and the chr22-38_28785274-29006793.1–miR-494-3p–SLC9A7 axis might regulate cellular activities associated with CD4+ and CD8+ T cell infiltration, respectively, in BRCA.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 998-998
Author(s):  
Robert G. Newman ◽  
Eckhard R. Podack ◽  
Robert B. Levy

Abstract Abstract 998 Tumor relapse is still the major cause of morbidity and mortality in patients with hematologic cancers that undergo aggressive chemo-radiotherapy followed by autologous hematopoietic cell transplantation (auto-HCT). Hence, there is a critical need for new anti-tumor therapies. Heat shock protein (HSP) based vaccines elicit innate and adaptive immune responses in murine studies and have shown promise in clinical trials. The pre-clinical studies here investigated the efficacy of vaccination with tumor cells secreting the HSP fusion gp96-Ig together with directed IL-2 in tumor bearing auto-HCT recipients. To mimic clinical T cell replete auto-HCT, transplanted donor T cells were obtained from congenic tumor bearing mice (C57BL/6 CD45.2+ CD90.1+) that had been previously inoculated intraperitoneally (ip) with 4×106 OVA expressing lymphoma cells (E.G7). Some of these donor mice received 0.5×106 CD8 T cells specific for OVA257–264 (OT-I) to allow for tumor antigen specific T cell monitoring. Three weeks later, T cells were harvested from these animals bearing progressively growing tumor for use in T cell replete auto-HCT. Recipient mice (C57BL/6 CD45.2+ CD90.2+) received 9.5 Gy TBI with subsequent infusion of 5×106 congenic T cell depleted bone marrow cells (C57BL/6 CD45.1+ CD90.2+) supplemented with 2×106 enriched T cells from the tumor bearing donors. The following day, recipients were inoculated ip with 1×105 viable E.G7 lymphoma cells. Based on our prior findings, a multiple vaccination protocol was employed utilizing 1×107 irradiated E.G7 cells transfected to secrete the HSP fusion gp96-Ig (E.G7-gp96-Ig). Some recipients were administered IL-2 via specific antibody-cytokine complexes comprised of IL-2 and αIL-2 mAb clone S4B6 (IL-2/αIL-2CD122). This specific IL-2 complex has been shown to interact with cells expressing the β chain (CD122) of the IL-2 receptor, such as memory CD8 T cells and NK cells, but not with cells expressing the α chain (CD25). Compared to recipients of T cell replete auto-HCT vaccinated with parental E.G7 tumor cells who exhibited virtually no increase in antigen-specific CD8 T cells, marked expansion was detected in the blood after 2 vaccinations with E.G7-gp96-Ig, i.e. within 1 week of auto-HCT. This response reached a plateau after 3 vaccinations, and persisted throughout the 5 vaccine protocol. To quantitate this vaccine induced CD8 T cell expansion, analysis of the vaccine site, splenic and lymph node compartments was performed following 3 vaccinations, i.e. 2 weeks post-HCT. In contrast to the modest 25× increase observed after vaccination with parental E.G7 cells, a 175× expansion was detected following E.G7-gp96-Ig vaccination (6.8×106 vs. 3.8×104 input). Moreover, 75% of these gp96-Ig expanded CD8 T cells at the vaccine site were bifunctional, expressing IFN-γ and TNF-α following antigen specific stimulation ex vivo. Strikingly, combined treatment with vaccine cells secreting gp96-Ig together with IL-2/αIL-2CD122 complex resulted in a 1000× enhancement of antigen specific CD8 T cell numbers in all compartments analyzed. Tumor bearing auto-HCT recipients exhibited a median survival time (MST) of 1 month if not vaccinated or if vaccinated with parental E.G7 cells (Figure). However, vaccination with E.G7-gp96-Ig extended the MST by more than 2 weeks and ∼20% of recipients survived long term (>100 days). This effect was dependent on T cells since gp96-Ig vaccination alone without donor T cells resulted in no MST extension. Combination therapy with tumor cells secreting gp96-Ig and IL-2/αIL-2CD122 complex markedly elevated total CD8 T cells as well as NK cells at the vaccine site and in secondary lymphoid tissues, two populations that have been shown to facilitate HSP based vaccines. Notably, this strategy resulted in a MST >100 days with ∼60% of mice surviving indefinitely. We propose that 3 components are required together with auto-HCT to avoid relapse related mortality: (1) transplanted autologous T cells, (2) a pan-antigen vaccination approach that induces potent antigen presentation and activation of multiple antigen specific T cells, i.e. tumor cells secreting gp96-Ig, and (3) an adjuvant that potentiates this vaccine induced response, i.e. IL-2 delivered in the form of an antibody-cytokine complex. In total, this combinatorial protocol represents a promising regimen that could be translated into the clinic for patients with hematologic cancers. Disclosures: Podack: Heat Biologics, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3363-3370 ◽  
Author(s):  
Monchou Fann ◽  
Jason M. Godlove ◽  
Marta Catalfamo ◽  
William H. Wood ◽  
Francis J. Chrest ◽  
...  

Abstract To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response.


Sign in / Sign up

Export Citation Format

Share Document