scholarly journals Peripartum Investigation of Red Blood Cell Properties in Women Diagnosed with Early-Onset Preeclampsia

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2714
Author(s):  
Beata Csiszar ◽  
Gergely Galos ◽  
Simone Funke ◽  
Dora Kinga Kevey ◽  
Matyas Meggyes ◽  
...  

We investigated peripartum maternal red blood cell (RBC) properties in early-onset preeclampsia (PE). Repeated blood samples were taken prospectively for hemorheological measurements at PE diagnosis (n = 13) or during 26–34 weeks of gestation in healthy pregnancies (n = 24), then at delivery, and 72 h postpartum. RBC aggregation was characterized by M index (infrared light transmission between the aggregated RBCs in stasis) and aggregation index (AI—laser backscattering from the RBC aggregates). We observed significantly elevated RBC aggregation (M index = 9.8 vs. 8.5; AI = 72.9% vs. 67.5%; p < 0.001) and reduced RBC deformability in PE (p < 0.05). A positive linear relationship was observed between AI and gestational age at birth in PE by regression analysis (R2 = 0.554; p = 0.006). ROC analysis of AI showed an AUC of 0.84 (0.68–0.99) (p = 0.001) for PE and indicated a cutoff of 69.4% (sensitivity = 83.3%; specificity = 62.5%), while M values showed an AUC of 0.75 (0.58–0.92) (p = 0.019) and indicated a cutoff of 8.39 (sensitivity = 90.9% and specificity = 50%). The predicted probabilities from the combination of AI and M variables showed increased AUC = 0.90 (0.79–1.00) (p < 0.001). Our results established impaired microcirculation in early-onset PE manifesting as deteriorated maternal RBC properties. The longer the pathologic pregnancy persists, the more pronounced the maternal erythrocyte aggregation. AI and M index could help in the prognostication of early-onset PE, but further investigations are warranted to confirm the prognostic role before the onset of symptoms.

2000 ◽  
Vol 88 (6) ◽  
pp. 2074-2080 ◽  
Author(s):  
Ozlem Yalcin ◽  
Melek Bor-Kucukatay ◽  
Umit K. Senturk ◽  
Oguz K. Baskurt

Red blood cell (RBC) mechanical properties were investigated after swimming exercise in trained and untrained rats. A group of rats was trained for 6 wk (60 min swimming, daily), and another group was kept sedentary. Blood samples were obtained either within 5 min or 24 h after 60 min swimming in both groups. In the untrained rats, the RBC aggregation index decreased to 2.60 ± 0.4 immediately after exercise from a control value of 6.73 ± 0.18 ( P < 0.01), whereas it increased to 13.13 ± 0.66 after 24 h ( P < 0.01). RBC transit time through 5-μm pores increased to 3.53 ± 0.16 ms within 5 min after the exercise from a control value of 2.19 ± 0.07 ms ( P < 0.005). A very significant enhancement (166%) in RBC lipid peroxidation was detected only after 24 h. In the trained group, the alterations in all these parameters were attenuated; there was a slight, transient impairment in RBC deformability (transit time = 2.64 ± 0.13 ms), and lipid peroxidation was found to be unchanged. These findings suggest that training can significantly limit the hemorheological alterations related to a given bout of exercise. Whether this effect is secondary to the training-induced reduction in the degree of metabolic and/or hormonal perturbation remains to be determined.


2006 ◽  
Vol 290 (2) ◽  
pp. H765-H771 ◽  
Author(s):  
Ozlem Yalcin ◽  
Funda Aydin ◽  
Pinar Ulker ◽  
Mehmet Uyuklu ◽  
Firat Gungor ◽  
...  

The normal transmyocardial tissue hematocrit distribution (i.e., subepicardial greater than subendocardial) is known to be affected by red blood cell (RBC) aggregation. Prior studies employing the use of infused large macromolecules to increase erythrocyte aggregation are complicated by both increased plasma viscosity and dilution of plasma. Using a new technique to specifically alter the aggregation behavior by covalent attachment of Pluronic F-98 to the surface of the RBC, we have determined the effects of only enhanced aggregation (i.e., Pluronic F-98-coated RBCs) versus enhanced aggregation with increased plasma viscosity (i.e., an addition of 500 kDa dextran) on myocardial tissue hematocrit in rapidly frozen guinea pig hearts. Although both approaches equally increased aggregation, tissue hematocrit profiles differed markedly: 1) when Pluronic F-98-coated cells were used, the normal transmyocardial gradient was abolished, and 2) when dextran was added, the hematocrit remained at subepicardial levels for about one-half the thickness of the myocardium and then rapidly decreased to the control level in the subendocardial layer. Our results indicate that myocardial hematocrit profiles are sensitive to both RBC aggregation and to changes of plasma viscosity associated with increased RBC aggregation. Furthermore, they suggest the need for additional studies to explore the mechanisms affecting RBC distribution in three-dimensional vascular beds.


Author(s):  
Barbara Barath ◽  
Viktoria Somogyi ◽  
Bence Tanczos ◽  
Adam Varga ◽  
Zsuzsanna Bereczky ◽  
...  

BACKGROUND: Red blood cell (RBC) aggregation plays an important role in the physiological processes of the microcirculation. The complete mechanism of aggregation is still unclear, and it is influenced by several cellular and plasmatic factors. One of these factors is the hematocrit (Hct). OBJECTIVE: We hypothesized that the relation of RBC aggregation and Hct differs between species. METHODS: From anticoagulated blood samples of healthy volunteers, rats, dogs, and pigs, 20, 40, and 60 %Hct RBC, autologous plasma suspensions were prepared. Hematological parameters and RBC aggregation was determined by light-transmission and light-reflection method. RESULTS: Suspensions at 20%and 60%Hct expressed lower RBC aggregation than of 40%Hct suspensions, showing inter-species differences. By curve fitting the Hct at the highest aggregation value differed in species (human: 45.25%- M 5 s, 40.86%- amp;rat: 44.44 %- M1 10 s, 39.37%- amp; dog: 42.48%- M 5 s, 44.29%- amp; pig: 47.63%- M 5 s, 52.8%- amp). CONCLUSION: RBC aggregation - hematocrit relation shows inter-species differences. Human blood was found to be the most sensitive for hematocrit changes. The more obvious differences could be detected by M 5 s by light-transmission method and amplitude parameter using light-reflection method.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 886
Author(s):  
Alicja Szołna-Chodór ◽  
Bronisław Grzegorzewski

Glucose metabolism disorders contribute to the development of various diseases. Numerous studies show that these disorders not only change the normal values of biochemical parameters but also affect the mechanical properties of blood. To show the influence of glucose and poloxamer 188 (P188) on the mechanical properties of a red-blood-cell (RBC) suspension, we studied the aggregation of the cells. To show the mechanisms of the mechanical properties of blood, we studied the effects of glucose and poloxamer 188 (P188) on red-blood-cell aggregation. We used a model in which cells were suspended in a dextran 70 solution at a concentration of 2 g/dL with glucose and P188 at concentrations of 0–3 g/dL and 0–3 mg/mL, respectively. RBC aggregation was determined using an aggregometer, and measurements were performed every 4 min for 1 h. Such a procedure enabled the incubation of RBCs in solution. The aggregation index determined from the obtained syllectograms was used as a measure of aggregation. Both the presence of glucose and that of P188 increased the aggregation index with the incubation time until saturation was reached. The time needed for the saturation of the aggregation index increased with increasing glucose and P188 concentrations. As the concentrations of these components increased, the joint effect of glucose and P188 increased the weakening of RBC aggregation. The mechanisms of the observed changes in RBC aggregation in glucose and P188 solutions are discussed.


2018 ◽  
Vol 10 (16) ◽  
pp. 1805-1816 ◽  
Author(s):  
Yang Jun Kang

The erythrocyte sedimentation rate (ESR) and red blood cell (RBC) aggregation in a driving syringe are simultaneously measured by quantifying blood press index (Ipress) and RBC aggregation index (IRA) in a microfluidic device.


2012 ◽  
Author(s):  
Eno Hysi ◽  
Ratan K. Saha ◽  
Min Rui ◽  
Michael C. Kolios

Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1127 ◽  
Author(s):  
Pei Lin ◽  
Chun-Chao Chang ◽  
Kuo-Ching Yuan ◽  
Hsing-Jung Yeh ◽  
Sheng-Uei Fang ◽  
...  

Red blood cell (RBC) aggregation and iron status are interrelated and strongly influenced by dietary factors, and their alterations pose a great risk of dyslipidemia and metabolic syndrome (MetS). Currently, RBC aggregation-related dietary patterns remain unclear. This study investigated the dietary patterns that were associated with RBC aggregation and their predictive effects on hyperlipidemia and MetS. Anthropometric and blood biochemical data and food frequency questionnaires were collected from 212 adults. Dietary patterns were derived using reduced rank regression from 32 food groups. Adjusted linear regression showed that hepcidin, soluble CD163, and serum transferrin saturation (%TS) independently predicted RBC aggregation (all p < 0.01). Age-, sex-, and log-transformed body mass index (BMI)-adjusted prevalence rate ratio (PRR) showed a significant positive correlation between RBC aggregation and hyperlipidemia (p-trend < 0.05). RBC aggregation and iron-related dietary pattern scores (high consumption of noodles and deep-fried foods and low intake of steamed, boiled, and raw food, dairy products, orange, red, and purple vegetables, white and light-green vegetables, seafood, and rice) were also significantly associated with hyperlipidemia (p-trend < 0.05) and MetS (p-trend = 0.01) after adjusting for age, sex, and log-transformed BMI. Our results may help dieticians develop dietary strategies for preventing dyslipidemia and MetS.


Sign in / Sign up

Export Citation Format

Share Document