scholarly journals CRMP2 Is Involved in Regulation of Mitochondrial Morphology and Motility in Neurons

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2781
Author(s):  
Tatiana Brustovetsky ◽  
Rajesh Khanna ◽  
Nickolay Brustovetsky

Regulation of mitochondrial morphology and motility is critical for neurons, but the exact mechanisms are unclear. Here, we demonstrate that these mechanisms may involve collapsin response mediator protein 2 (CRMP2). CRMP2 is attached to neuronal mitochondria and binds to dynamin-related protein 1 (Drp1), Miro 2, and Kinesin 1 light chain (KLC1). Treating neurons with okadaic acid (OA), an inhibitor of phosphatases PP1 and PP2A, resulted in increased CRMP2 phosphorylation at Thr509/514, Ser522, and Thr555, and augmented Drp1 phosphorylation at Ser616. The CRMP2-binding small molecule (S)-lacosamide ((S)-LCM) prevented an OA-induced increase in CRMP2 phosphorylation at Thr509/514 and Ser522 but not at Thr555, and also failed to alleviate Drp1 phosphorylation. The increased CRMP2 phosphorylation correlated with decreased CRMP2 binding to Drp1, Miro 2, and KLC1. (S)-LCM rescued CRMP2 binding to Drp1 and Miro 2 but not to KLC1. In parallel with CRMP2 hyperphosphorylation, OA increased mitochondrial fission and suppressed mitochondrial traffic. (S)-LCM prevented OA-induced alterations in mitochondrial morphology and motility. Deletion of CRMP2 with a small interfering RNA (siRNA) resulted in increased mitochondrial fission and diminished mitochondrial traffic. Overall, our data suggest that the CRMP2 expression level and phosphorylation state are involved in regulating mitochondrial morphology and motility in neurons.

2005 ◽  
Vol 16 (11) ◽  
pp. 5077-5086 ◽  
Author(s):  
Annett Koch ◽  
Yisang Yoon ◽  
Nina A. Bonekamp ◽  
Mark A. McNiven ◽  
Michael Schrader

The mammalian dynamin-like protein DLP1/Drp1 has been shown to mediate both mitochondrial and peroxisomal fission. In this study, we have examined whether hFis1, a mammalian homologue of yeast Fis1, which has been shown to participate in mitochondrial fission by an interaction with DLP1/Drp1, is also involved in peroxisomal growth and division. We show that hFis1 localizes to peroxisomes in addition to mitochondria. Through differential tagging and deletion experiments, we demonstrate that the transmembrane domain and the short C-terminal tail of hFis1 is both necessary and sufficient for its targeting to peroxisomes and mitochondria, whereas the N-terminal region is required for organelle fission. hFis1 promotes peroxisome division upon ectopic expression, whereas silencing of Fis1 by small interfering RNA inhibited fission and caused tubulation of peroxisomes. These findings provide the first evidence for a role of Fis1 in peroxisomal fission and suggest that the fission machinery of mitochondria and peroxisomes shares common components.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Víctor Toledano ◽  
Enrique Hernández-Jiménez ◽  
Carolina Cubillos-Zapata ◽  
Marta Flandez ◽  
Enrique Álvarez ◽  
...  

We show that galactomannan, a polysaccharide consisting of a mannose backbone with galactose side groups present on the cell wall of several fungi, induces a reprogramming of the inflammatory response in human macrophages through dectin-1 receptor. The nuclear factor kappa-light-chain-enhancer of activated B cells 2 (NFκB2)/p100 was overexpressed after galactomannan challenge. Knocking down NFκB2/p100 using small interfering RNA (siRNA) indicated that NFκB2/p100 expression is a crucial factor in the progression of the galactomannan-induced refractoriness. The data presented in this study could be used as a modulator of inflammatory response in clinical situations where refractory state is required.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4407-4407
Author(s):  
Jonathan E Phipps ◽  
James S Foster ◽  
Daniel P Kestler ◽  
Robert Donnell ◽  
Alan Solomon ◽  
...  

Abstract Abstract 4407 Introduction A major contributing factor to the morbidity and mortality of patients with plasma cell dyscrasias (i.e., light chain deposition disease, light chain amyloidosis (AL), etc.) is the overproduction and deposition of immunoglobulin light chain (LC) protein. Accumulation of insoluble fibrillar or amorphous aggregates within vital organs, particularly the kidneys, contributes to progressive loss of function and failure. Recent reports have shown that reducing levels of precursor LC proteins by 50% correlated with improved prognosis in patients with AL. Current therapies to suppress the production of monoclonal free LC rely on conventional or high dose myeloablative chemotherapeutic intervention. These therapies carry inherent risk and may not be appropriate in every situation, thus there is a need to employ alternative or adjuvant therapeutic approaches. To this end, we have investigated the ability of small interfering RNA molecules to decrease production of LC mRNA and protein secretion in both a synthetic and naturally occurring myeloma cell line. We report here that exposure of these lines to small interfering RNA (siRNA) oligonucleotides inhibited LC production in a specific and non-cytotoxic manner. Methods SP2/O mouse myeloma cells were stably transfected with a construct encoding a human λ6 LC protein (Wil) and designated SP2/O-1 for this study. The human λ2 producing cell line RPMI 8226 was purchased from ATCC. For both lines, LC mRNA was sequenced and used to design siRNA molecules targeting the V-, J-, or C-region of the LC. Cells were cultured for 1-3 d with sequence-specific siRNA, sham siRNA, or with media alone after which time LC mRNA levels were assessed by real-time PCR, and cellular or secreted LC protein concentrations were measured using flow cytometry or ELISA, respectively. Results Treatment with siRNA was well tolerated and no significant reduction in cell viability was observed in either the SP2/O-1 or RPMI 8226 cells at any of the timepoints assayed. Exposure of either SP2/O-1 or 8226 cells to siRNAs targeting the LC resulted in reductions of mRNA as compared to sham siRNA-treated controls. Flow cytometric analysis of 8226 cells immunostained with anti-LC antibodies at 48 h post transfection, indicated that ∼63% and 83% of the total cell number contained reduced amounts of cytoplasmic LC following treatment with V-, or C- region-specific siRNA, respectively. The 8226 LC protein was also significantly reduced by 20-60% in culture supernatants over the 72h period in cells exposed to experimental siRNAs as compared with sham-treated cells. Similarly, treating the SP2/O-1 cells with siRNAs led to significant (20-52%; P < 0.05) reductions in secreted LC Wil over 72 h as compared to sham-siRNA treatments. Conclusions We demonstrate here that siRNA provides a viable option for preventing the synthesis and thus secretion of pathologic LC protein using two cell lines, and that this reduction is carried out in a specific and non-cytotoxic manner. These results provide support for the potential use of siRNA to decrease the secretion of pathologic LC proteins in patients diagnosed with plasma cell dyscrasias. Our future goal will be to evaluate the action of siRNAs on LC production in vivo using a murine model of the disease. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 38 (11) ◽  
pp. 1006-1013 ◽  
Author(s):  
Jonathan E. Phipps ◽  
Daniel P. Kestler ◽  
James S. Foster ◽  
Stephen J. Kennel ◽  
Robert Donnell ◽  
...  

2008 ◽  
Vol 103 (6) ◽  
pp. 1833-1848 ◽  
Author(s):  
Mei-Hui Ni ◽  
Chih-Ching Wu ◽  
Wen-Hsiung Chan ◽  
Kun-Yi Chien ◽  
Jau-Song Yu

2011 ◽  
Vol 22 (16) ◽  
pp. 2834-2847 ◽  
Author(s):  
Zheng Meng ◽  
Luisa Capalbo ◽  
David M. Glover ◽  
William G. Dunphy

The mediator protein Claspin is critical for the activation of the checkpoint kinase Chk1 during checkpoint responses to stalled replication forks. This function involves the Chk1-activating domain (CKAD) of Claspin, which undergoes phosphorylation on multiple conserved sites. These phosphorylations promote binding of Chk1 to Claspin and ensuing activation of Chk1 by ATR. However, despite the importance of this regulatory process, the kinase responsible for these phosphorylations has remained unknown. By using a multifaceted approach, we have found that casein kinase 1 gamma 1 (CK1γ1) carries out this function. CK1γ1 phosphorylates the CKAD of Claspin efficiently in vitro, and depletion of CK1γ1 from human cells by small interfering RNA (siRNA) results in dramatically diminished phosphorylation of Claspin. Consequently, the siRNA-treated cells display impaired activation of Chk1 and resultant checkpoint defects. These results indicate that CK1γ1 is a novel component of checkpoint responses that controls the interaction of a key checkpoint effector kinase with its cognate mediator protein.


2013 ◽  
Vol 201 (7) ◽  
pp. 1037-1051 ◽  
Author(s):  
Stefan Strack ◽  
Theodore J. Wilson ◽  
J. Thomas Cribbs

Fission and fusion reactions determine mitochondrial morphology and function. Dynamin-related protein 1 (Drp1) is a guanosine triphosphate–hydrolyzing mechanoenzyme important for mitochondrial fission and programmed cell death. Drp1 is subject to alternative splicing of three exons with previously unknown functional significance. Here, we report that splice variants including the third but excluding the second alternative exon (x01) localized to and copurified with microtubule bundles as dynamic polymers that resemble fission complexes on mitochondria. A major isoform in immune cells, Drp1-x01 required oligomeric assembly and Arg residues in alternative exon 3 for microtubule targeting. Drp1-x01 stabilized and bundled microtubules and attenuated staurosporine-induced mitochondrial fragmentation and apoptosis. Phosphorylation of a conserved Ser residue adjacent to the microtubule-binding exon released Drp1-x01 from microtubules and promoted mitochondrial fragmentation in a splice form–specific manner. Phosphorylation by Cdk1 contributed to dissociation of Drp1-x01 from mitotic microtubules, whereas Cdk5-mediated phosphorylation modulated Drp1-x01 targeting to interphase microtubules. Thus, alternative splicing generates a latent, cytoskeletal pool of Drp1 that is selectively mobilized by cyclin-dependent kinase signaling.


2021 ◽  
Vol 118 (31) ◽  
pp. e2100032118
Author(s):  
Munetaka Nomoto ◽  
Glenn T. Konopaske ◽  
Naoya Yamashita ◽  
Reina Aoki ◽  
Aoi Jitsuki-Takahashi ◽  
...  

There are no validated biomarkers for schizophrenia (SCZ), a disorder linked to neural network dysfunction. We demonstrate that collapsin response mediator protein-2 (CRMP2), a master regulator of cytoskeleton and, hence, neural circuitry, may form the basis for a biomarker because its activity is uniquely imbalanced in SCZ patients. CRMP2’s activity depends upon its phosphorylation state. While an equilibrium between inactive (phosphorylated) and active (nonphosphorylated) CRMP2 is present in unaffected individuals, we show that SCZ patients are characterized by excess active CRMP2. We examined CRMP2 levels first in postmortem brains (correlated with neuronal morphometrics) and then, because CRMP2 is expressed in lymphocytes as well, in the peripheral blood of SCZ patients versus age-matched unaffected controls. In the brains and, more starkly, in the lymphocytes of SCZ patients <40 y old, we observed that nonphosphorylated CRMP2 was higher than in controls, while phosphorylated CRMP2 remained unchanged from control. In the brain, these changes were associated with dendritic structural abnormalities. The abundance of active CRMP2 with insufficient opposing inactive p-CRMP2 yielded a unique lowering of the p-CRMP2:CRMP2 ratio in SCZ patients, implying a disruption in the normal equilibrium between active and inactive CRMP2. These clinical data suggest that measuring CRMP2 and p-CRMP2 in peripheral blood might reflect intracerebral processes and suggest a rapid, minimally invasive, sensitive, and specific adjunctive diagnostic aid for early SCZ: increased CRMP2 or a decreased p-CRMP2:CRMP2 ratio may help cinch the diagnosis in a newly presenting young patient suspected of SCZ (versus such mimics as mania in bipolar disorder, where the ratio is high).


2021 ◽  
Vol 8 ◽  
Author(s):  
Youyang Shi ◽  
Feifei Li ◽  
Man Shen ◽  
Chenpin Sun ◽  
Wei Hao ◽  
...  

Background: Doxorubicin (Dox) is one of the most effective chemotherapy agents used in the treatment of solid tumors and hematological malignancies. However, it causes dose-related cardiotoxicity that may lead to heart failure in patients. Luteolin (Lut) is a common flavonoid that exists in many types of plants. It has been studied for treating various diseases such as hypertension, inflammatory disorders, and cancer. In this study, we evaluated the cardioprotective and anticancer effects of Lut on Dox-induced cardiomyopathy in vitro and in vivo to explore related mechanisms in alleviating dynamin-related protein (Drp1)-mediated mitochondrial apoptosis.Methods: MTT and LDH assay were used to determine the viability and toxicity of cardiomyocytes treated with Dox and Lut. Flow cytometry was used to examine ROS levels, and electron and confocal microscopy was employed to assess the mitochondrial morphology. The level of apoptosis was examined by Hoechst 33258 staining. The protein levels of myocardial fission protein and apoptosis-related protein were examined using Western blot. Transcriptome analysis of the protective effect of Lut against Dox-induced cardiac toxicity in myocardial cells was performed using RNA sequencing technology. The protective effects of Lut against cardiotoxicity mediated by Dox in zebrafish were quantified. The effect of Lut increase the antitumor activity of Dox in breast cancer both in vitro and in vivo were further employed.Results: Lut ameliorated Dox-induced toxicity in H9c2 and AC16 cells. The level of oxidative stress was downregulated by Lut after Dox treatment of myocardial cells. Lut effectively reduced the increased mitochondrial fission post Dox stimulation in cardiomyocytes. Apoptosis, fission protein Drp1, and Ser616 phosphorylation were also increased post Dox and reduced by Lut. In the zebrafish model, Lut significantly preserved the ventricular function of zebrafish after Dox treatment. Moreover, in the mouse model, Lut prevented Dox-induced cardiotoxicity and enhanced the cytotoxicity in triple-negative breast cancer by inhibiting proliferation and metastasis and inducing apoptosis.


Sign in / Sign up

Export Citation Format

Share Document