scholarly journals Lymphocyte Counts and Multiple Sclerosis Therapeutics: Between Mechanisms of Action and Treatment-Limiting Side Effects

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3177
Author(s):  
Stefanie Fischer ◽  
Undine Proschmann ◽  
Katja Akgün ◽  
Tjalf Ziemssen

Although the detailed pathogenesis of multiple sclerosis (MS) is not completely understood, a broad range of disease-modifying therapies (DMTs) are available. A common side effect of nearly every MS therapeutic agent is lymphopenia, which can be both beneficial and, in some cases, treatment-limiting. A sound knowledge of the underlying mechanism of action of the selected agent is required in order to understand treatment-associated changes in white blood cell counts, as well as monitoring consequences. This review is a comprehensive summary of the currently available DMTs with regard to their effects on lymphocyte count. In the first part, we describe important general information about the role of lymphocytes in the course of MS and the essentials of lymphopenic states. In the second part, we introduce the different DMTs according to their underlying mechanism of action, summarizing recommendations for lymphocyte monitoring and definitions of lymphocyte thresholds for different therapeutic regimens.

2021 ◽  
Vol 11 (5) ◽  
pp. 335
Author(s):  
María José Zarzuelo Romero ◽  
Cristina Pérez Ramírez ◽  
María Isabel Carrasco Campos ◽  
Almudena Sánchez Martín ◽  
Miguel Ángel Calleja Hernández ◽  
...  

The introduction of new therapies for the treatment of multiple sclerosis (MS) is a very recent phenomenon and little is known of their mechanism of action. Moreover, the response is subject to interindividual variability and may be affected by genetic factors, such as polymorphisms in the genes implicated in the pathologic environment, pharmacodynamics, and metabolism of the disease or in the mechanism of action of the medications, influencing the effectiveness of these therapies. This review evaluates the impact of pharmacogenetics on the response to treatment with new therapies in patients diagnosed with MS. The results suggest that polymorphisms detected in the GSTP1, ITGA4, NQO1, AKT1, and GP6 genes, for treatment with natalizumab, ZMIZ1, for fingolimod and dimethyl fumarate, ADA, for cladribine, and NOX3, for dimethyl fumarate, may be used in the future as predictive markers of treatment response to new therapies in MS patients. However, there are few existing studies and their samples are small, making it difficult to generalize the role of these genes in treatment with new therapies. Studies with larger sample sizes and longer follow-up are therefore needed to confirm the results of these studies.


2020 ◽  
Vol 11 (3) ◽  
pp. 3807-3812
Author(s):  
Aziez Chettoum ◽  
Kamilia Guedri ◽  
Zouhir Djerrou ◽  
Rachid Mosbah ◽  
Latifa Khattabi ◽  
...  

Psychoneuroimmunology or the study of the relationships between the brain and the immune system is an area of research that has experienced significant development over the decade. Stress does not appear without consequences on the state of health, the role of fears, emotions and significant constraints in the appearance of organic and mental diseases. In this research, we studied the effect of stress and anxiety during exams at the end of the academic year (2018/2019) on the distribution of leukocyte subpopulations and the immune system, questionnaires has been completed by student volunteers, to estimate the anxio-depressive comorbidities through the (HADS) test during and outside exams, and in the same time we asked them for a blood sample the next morning day to carry out some biological assays (CBC). We also found that stress during exams caused a change in the distribution of different types of white blood cells, a total decrease in white blood cell counts with neutropenia and lymphopenia were found in students during exams compared to controls, and an increase in monocyte and other types of polymorphonuclear levels in students during exams compared to controls. Other tests measuring the effects of stress on specific functions of the immune system can be used.


Cureus ◽  
2018 ◽  
Author(s):  
Shetty Sushruth ◽  
Chellappa Vijayakumar ◽  
Krishnamachari Srinivasan ◽  
Nagarajan Raj Kumar ◽  
Gopal Balasubramaniyan ◽  
...  

2020 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Eric Danilo Pauls Sotelo ◽  
Cynthia Prado Vendruscolo ◽  
Joice Fülber ◽  
Sarah Raphaela Torquato Seidel ◽  
Fernando Mosquera Jaramillo ◽  
...  

Several studies in human and equine medicine have produced controversial results regarding the role of dimethylsulfoxide (DMSO) as a therapeutic agent. This study aimed to evaluate the effect of joint lavage with different DMSO concentrations on biomarkers of synovial fluid inflammation and cartilage degradation in joints with lipopolysaccharide (LPS)-induced synovitis. Twenty-six tibiotarsal joints of 13 horses were randomly distributed into four groups (lactated Ringer’s solution; 5% DMSO in lactated Ringer’s; 10% DMSO in lactated Ringer’s; and sham). All animals were evaluated for the presence of lameness, and synovial fluid analyses were performed at 0 h, 1 h, 8 h, 24 h, and 48 h (T0, T1, T8, T24, and T48, respectively). The white blood cell counts (WBC), total protein (TP), urea, prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α (TNF-α), hyaluronic acid (HA), and chondroitin sulfate (CS) concentrations were measured. The WBC counts and PGE2, IL-1β, IL-6, and TP concentrations increased in all groups at T8 compared to baseline values (p < 0.05). At T48, only the 5% DMSO and 10% DMSO groups showed a significant decrease in WBC counts (p < 0.05). Furthermore, the 10% DMSO group had lower concentrations of PGE2 and IL-1β at T48 than at T8 (p < 0.05) and presented lower IL-6 levels than the5% DMSO and lactated Ringer’s groups at T24. All groups showed an increase in CS concentration after LPS-induced synovitis. Joint lavage with 10% DMSO in lactated Ringer’s has anti-inflammatory but not chondroprotective effects.


2006 ◽  
Vol 8 (2) ◽  
pp. 33-38 ◽  
Author(s):  
June Halper

The introduction of disease-modifying therapies and the realization that multiple sclerosis (MS) is a treatable disease has seen the emergence of an expanded role for advanced practice nurses (APNs) in the MS arena. Within MS centers, clinics, inpatient settings, and private practices, APNs may function as one or more of the following: administrator, consultant, researcher, advocate, and clinician. Because of the significant roles APNs play in the management of patients with MS, they must embody a core set of competencies delineated by domains specific to MS care. As MS care continues to evolve, APNs remain at the forefront of the multidisciplinary team of health professionals dedicated to optimizing outcomes through research, education, and the identification and implementation of best practices.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xueli Fan ◽  
Yanfang Jiang ◽  
Jinming Han ◽  
Jingyao Liu ◽  
Yafen Wei ◽  
...  

Objective. This study aimed to examine the potential role of memory T follicular helper (Tfh) cells in patients with neuromyelitis optica/neuromyelitis optica spectrum disorders (NMO/NMOSD).Methods. The percentages of different subsets of circulating memory Tfh cells in 25 NMO/NMOSD patients before and after treatment as well as in 17 healthy controls were examined by flow cytometry. The levels of IL-21 and AQP4 Ab in plasma and CSF were measured by ELISA.Results. The percentages and numbers of circulating memory Tfh cells, ICOS+, CCR7−, CCR7−ICOS+, CCR7+, CCR7+ICOS+memory Tfh cells, and the levels of IL-21 in plasma and CSF were significantly increased in NMO/NMOSD patients. The percentages of CCR7−and CCR7−ICOS+memory Tfh cells were positively correlated with ARR, plasma IL-21, and AQP4 Ab levels. The percentages of CCR7+and CCR7+ICOS+memory Tfh cells were positively correlated with CSF white blood cell counts, proteins, and IL-21 levels. Treatment with corticosteroids significantly reduced the numbers of CCR7−ICOS+and CCR7+ICOS+memory Tfh cells as well as plasma IL-21 levels in patients with partial remission.Conclusions. Our findings indicate that circulating memory Tfh cells may participate in the relapse and development of NMO/NMOSD and may serve as a new therapeutic target.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1305
Author(s):  
Ana C. Londoño ◽  
Carlos A. Mora

A clear understanding of the origin and role of the different subtypes of the B cell lineage involved in the activity or remission of multiple sclerosis (MS) is important for the treatment and follow-up of patients living with this disease. B cells, however, are dynamic and can play an anti-inflammatory or pro-inflammatory role, depending on their milieu. Depletion of B cells has been effective in controlling the progression of MS, but it can have adverse side effects. A better understanding of the role of the B cell subtypes, through the use of surface biomarkers of cellular activity with special attention to the function of memory and regulatory B cells (Bregs), will be necessary in order to offer specific treatments without inducing undesirable effects.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 663-663
Author(s):  
John M. Joslin ◽  
Anthony A. Fernald ◽  
Zhijian Qian ◽  
John D. Crispino ◽  
Michelle M. Le Beau

Abstract Loss of a whole chromosome 5 or a deletion of the long arm of this chromosome, del(5q), is observed in 10% of patients with a myelodysplastic syndrome (MDS) or acute myeloid leukemia arising de novo, and in 40% of patients with therapy-related MDS or AML (t-MDS/t-AML). To identify a leukemia-related gene on chromosome 5, we previously delineated a 970 kb segment of 5q that is deleted in all patients examined, and prepared a genomic contig and transcript map of this region. Mutation analysis of 20 candidate genes within the commonly deleted segment did not reveal inactivating mutations in the remaining alleles, nor was there evidence of transcriptional silencing via DNA methylation. These observations are compatible with a haploinsufficiency model in which loss of one allele of the relevant gene(s) perturbs cell fate. One candidate gene is EGR1, which encodes a zinc finger transcription factor that is a member of the WT1 family of transcription factors. EGR1 has been shown to regulate hematopoietic cytokine levels (IL3, GM-CSF). Mouse embryo fibroblasts that are null or hemizygous for Egr1 bypass senescence and have apparently immortalized growth characteristics, consistent with loss of a tumor suppressor gene. Subsequent studies revealed that Egr1 is a transcriptional activator of both the p53 and p21Cip1/Waf1 genes during the stress response as well as during senescence, thereby representing a critical mechanism for controlling proliferation, growth arrest, differentiation, and apoptosis. Loss of Egr1 function may allow hematopoietic stem cells to bypass p53-mediated senescence or apoptosis, thereby contributing to leukemogenesis. To evaluate the role of Egr1 in hematopoiesis, we obtained Egr1+/− mice from J. Milbrandt (Washington University). Egr1−/− mice are viable, with mild post-natal growth retardation and infertility. Complete blood counts and body weight were collected for wild-type, Egr1+/−, and Egr1−/− mice every 6 weeks over the course of one year. The Egr1−/− mice display elevated white blood cell counts, elevated lymphocytes, and decreased neutrophil counts, and are unable to maintain normal RBC counts, Hb, and Hct as compared to wild-type and heterozygous mice. To examine the role of Egr1 in erythropoiesis, we evaluated the erythropoietic response to phenylhydrazine-induced hemolytic anemia by treating Egr-1-deficient mice with standard doses of phenylhydrazine (60 mg/kg). Egr1+/− and Egr1−/− mice were unable to respond to the anemia and died with 2 days of the treatment, whereas wild type mice recovered fully within 12 days of the treatment. Egr1-deficient mice treated with N-nitroso-N-ethylurea (ENU), a potent DNA alkylating agent, develop MDS or T cell lymphoma. Egr1-deficient mice developed lymphomas at an increased frequency and rate compared to wild-type animals, indicating that Egr1 cooperates with other mutations in the genesis of hematopoietic neoplasms. MDS was seen only in the Egr1-deficient mice, and is characterized by elevated white blood cell counts, anemia, and thrombocytopenia, with ineffective erythropoiesis in the bone marrow and spleen. Together, these results suggest a role for Egr1 in murine erythropoiesis and implicate EGR1 in the development of myeloid leukemias characterized by abnormalities of chromosome 5.


Sign in / Sign up

Export Citation Format

Share Document