scholarly journals The NOTCH3 Downstream Target HEYL Is Required for Efficient Human Airway Basal Cell Differentiation

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3215
Author(s):  
Manish Bodas ◽  
Bharathiraja Subramaniyan ◽  
Andrew R. Moore ◽  
Jordan P. Metcalf ◽  
Sarah R. Ocañas ◽  
...  

Basal cells (BCs) are stem/progenitor cells of the mucociliary airway epithelium, and their differentiation is orchestrated by the NOTCH signaling pathway. NOTCH3 receptor signaling regulates BC to club cell differentiation; however, the downstream responses that regulate this process are unknown. Overexpression of the active NOTCH3 intracellular domain (NICD3) in primary human bronchial epithelial cells (HBECs) on in vitro air–liquid interface culture promoted club cell differentiation. Bulk RNA-seq analysis identified 692 NICD3-responsive genes, including the classical NOTCH target HEYL, which increased in response to NICD3 and positively correlated with SCGB1A1 (club cell marker) expression. siRNA knockdown of HEYL decreased tight junction formation and cell proliferation. Further, HEYL knockdown reduced club, goblet and ciliated cell differentiation. In addition, we observed decreased expression of HEYL in HBECs from donors with chronic obstructive pulmonary disease (COPD) vs. normal donors which correlates with the impaired differentiation capacity of COPD cells. Finally, overexpression of HEYL in COPD HBECs promoted differentiation into club, goblet and ciliated cells, suggesting the impaired capacity of COPD cells to generate a normal airway epithelium is a reversible phenotype that can be regulated by HEYL. Overall, our data identify the NOTCH3 downstream target HEYL as a key regulator of airway epithelial differentiation.

2021 ◽  
Author(s):  
Manish Bodas ◽  
Bharathiraja Subramaniyan ◽  
Andrew R. Moore ◽  
Jordan P. Metcalf ◽  
Sarah R. Ocañas ◽  
...  

AbstractBasal cells (BC) are the resident stem/progenitor cells of the adult pseudostratified airway epithelium, whose differentiation program is orchestrated by the NOTCH signaling pathway. NOTCH3 receptor mediated signaling regulates BC to club cell differentiation; however, the downstream responses that regulate this process are largely unknown. In the present study we used an in vitro air-liquid interface model of the human pseudostratified airway epithelium to identify the NOTCH3-dependent downstream genes/pathways that regulate human BC to club cell differentiation. Activation of NOTCH3 signaling in BC via lentivirus-mediated over-expression of the active NOTCH3 intracellular domain (NICD3) promoted club cell differentiation. Bulk RNA-seq analysis of control vs NICD3-transduced cells, identified 692 NICD3 responsive genes enriched for pathways linked to airway epithelial biology and differentiation including Wnt/β-catenin Signaling. Expression of the classical NOTCH target HEYL increased in response to NOTCH3 activation and positively correlated with expression of the club cell marker SCGB1A1. Further, using single-cell RNA-seq, we report that HEYL+ cells primarily clustered with SCGB1A1+ and NOTCH3+ cells. Moreover, HEYL protein co-localized with SCGB1A1 in ALI cultures in vitro and in the human and mouse airway epithelium in vivo. siRNA-mediated knockdown of HEYL in BC led to changes in epithelial structure including altered morphology and significant reductions in transepithelial electrical resistance and expression of tight junction related genes. Finally, HEYL knockdown significantly reduced the number of SCGB1A1+ club cells, along with a corresponding increase in KRT8+ BC-intermediate cells. Overall, our data identifies NOTCH3-HEYL signaling as a key regulator of BC to club cell differentiation.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1945
Author(s):  
Sheyla González ◽  
Maximilian Halabi ◽  
David Ju ◽  
Matthew Tsai ◽  
Sophie X. Deng

The Notch signaling pathway plays a key role in proliferation and differentiation. We investigated the effect of Jagged 1 (Jag1)-mediated Notch signaling activation in the human limbal stem/progenitor cell (LSC) population and the stratification of the limbal epithelium in vitro. After Notch signaling activation, there was a reduction in the amount of the stem/progenitor cell population, epithelial stratification, and expression of proliferation markers. There was also an increase of the corneal epithelial differentiation. In the presence of Jag1, asymmetric divisions were decreased, and the expression pattern of the polarity protein Par3, normally present at the apical-lateral membrane of basal cells, was dispersed in the cells. We propose a mechanism in which Notch activation by Jag1 decreases p63 expression at the basal layer, which in turn reduces stratification by decreasing the number of asymmetric divisions and increases differentiation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katharina Ernst ◽  
Ann-Katrin Mittler ◽  
Veronika Winkelmann ◽  
Carolin Kling ◽  
Nina Eberhardt ◽  
...  

AbstractWhooping cough is caused by Bordetella pertussis that releases pertussis toxin (PT) which comprises enzyme A-subunit PTS1 and binding/transport B-subunit. After receptor-mediated endocytosis, PT reaches the endoplasmic reticulum from where unfolded PTS1 is transported to the cytosol. PTS1 ADP-ribosylates G-protein α-subunits resulting in increased cAMP signaling. Here, a role of target cell chaperones Hsp90, Hsp70, cyclophilins and FK506-binding proteins for cytosolic PTS1-uptake is demonstrated. PTS1 specifically and directly interacts with chaperones in vitro and in cells. Specific pharmacological chaperone inhibition protects CHO-K1, human primary airway basal cells and a fully differentiated airway epithelium from PT-intoxication by reducing intracellular PTS1-amounts without affecting cell binding or enzyme activity. PT is internalized by human airway epithelium secretory but not ciliated cells and leads to increase of apical surface liquid. Cyclophilin-inhibitors reduced leukocytosis in infant mouse model of pertussis, indicating their promising potential for developing novel therapeutic strategies against whooping cough.


1995 ◽  
Vol 43 (4) ◽  
pp. 353-362 ◽  
Author(s):  
M A Stepp ◽  
L Zhu ◽  
D Sheppard ◽  
R L Cranfill

A recently characterized integrin alpha-chain, alpha 9, forms heterodimers with the integrin beta 1-chain and is present in the skin with a distribution similar to that of alpha 2 and alpha 3, other beta 1 integrins. To determine whether alpha 9 is expressed in the stratified squamous epithelium of the cornea, we used immunohistochemical techniques to compare the distribution of alpha 9 in the adult mouse cornea with that of alpha 3. Abundant alpha 9 was expressed in the lateral and basal membranes of the basal cells of the conjunctiva and corneal limbus, but very little alpha 9 was present in the basal cells of the central corneal epithelium. In contrast, alpha 3 was present in the membranes of basal cells of the conjunctiva, limbus, and central cornea. To determine when during postnatal maturation of the corneal epithelium alpha 9 becomes restricted to the limbus, we looked at the distribution of alpha 9 and alpha 3 in the developing mouse eye from birth to eyelid opening. At birth, the basal cells of the cornea and developing limbal region did not express alpha 9, but there was abundant alpha 9 expressed in suprabasal cells between the fused lids and in the basal cells of the skin and conjunctiva. In contrast, alpha 3, integrin was expressed uniformly in the basal cells across the surface of the conjunctiva, limbus, and cornea and was present only in the basal cells of the epithelium between the fused eyelids. In the central cornea, alpha 9 expression increased in basal cells up until Day 10 after birth. After Day 10, alpha 9 expression in the central cornea began to decrease; after the lids were open, alpha 9 expression in the central cornea became restricted to the limbus. In the basal and suprabasal cells between the fused eyelids expression of alpha 9 became increasingly restricted over time to the basal cells. Recent data suggest that alpha 9 beta 1 can interact with tenascin. Our dual labeling confocal microscopy studies indicate that localization of alpha 9 and tenascin are not coordinated in the developing mouse cornea. Many recent studies have shown an important role for beta 1 integrins in mediating epithelial cell differentiation in vitro; in vivo, changes in integrin expression have been found in wound healing, psoriasis, and in basal and squamous cell carcinomas.(ABSTRACT TRUNCATED AT 400 WORDS)


2008 ◽  
Vol 134 (4) ◽  
pp. A-84
Author(s):  
Xiangdong Yang ◽  
David M. Pritchard ◽  
Shigeo Takaishi ◽  
shuiping Tu ◽  
Frédéric Marrache ◽  
...  

2000 ◽  
Vol 48 (4) ◽  
pp. 523-533 ◽  
Author(s):  
Emmanuel Mongodin ◽  
Odile Bajolet ◽  
Jocelyne Hinnrasky ◽  
Edith Puchelle ◽  
Sophie de Bentzmann

Staphylococcus aureus is a common human pathogen involved in non-bronchial diseases and in genetic and acquired bronchial diseases. In this study, we applied an immunolabeling approach for in vivo and in vitro detection of S. aureus, based on the affinity of staphylococcal protein A (SpA) for the Fc region of immunoglobulins, especially IgG. Most strains of S. aureus, including clinical strains, can be detected with this labeling technique. The approach can be used for detection and localization with transmission electron microscopy or light-fluorescence microscopy of S. aureus in infected tissues such as human bronchial tissue from cystic fibrosis (CF) patients. The methodology can also be applied to cell culture models with the aim of characterizing bacterial adherence to epithelial cells in backscattered electron imaging with scanning electron microscopy. Application to the study of S. aureus adherence to airway epithelium showed that the bacteria did not adhere in vivo to intact airway epithelium. In contrast, bacteria adhered to the basolateral plasma membrane of columnar cells, to basal cells, to the basement membrane and were identified beneath the lamina propria when the epithelium was injured and remodeled, or in vitro when the epithelial cells were dedifferentiated.


2018 ◽  
Vol 115 (26) ◽  
pp. 6822-6827 ◽  
Author(s):  
Jie Zhou ◽  
Cun Li ◽  
Norman Sachs ◽  
Man Chun Chiu ◽  
Bosco Ho-Yin Wong ◽  
...  

Novel reassortant avian influenza H7N9 virus and pandemic 2009 H1N1 (H1N1pdm) virus cause human infections, while avian H7N2 and swine H1N1 virus mainly infect birds and pigs, respectively. There is no robust in vitro model for assessing the infectivity of emerging viruses in humans. Based on a recently established method, we generated long-term expanding 3D human airway organoids which accommodate four types of airway epithelial cells: ciliated, goblet, club, and basal cells. We report differentiation conditions which increase ciliated cell numbers to a nearly physiological level with synchronously beating cilia readily discernible in every organoid. In addition, the differentiation conditions induce elevated levels of serine proteases, which are essential for productive infection of human influenza viruses and low-pathogenic avian influenza viruses. We also established improved 2D monolayer culture conditions for the differentiated airway organoids. To demonstrate the ability of differentiated airway organoids to identify human-infective virus, 3D and 2D differentiated airway organoids are applied to evaluate two pairs of viruses with known distinct infectivity in humans, H7N9/Ah versus H7N2 and H1N1pdm versus an H1N1 strain isolated from swine (H1N1sw). The human-infective H7N9/Ah virus replicated more robustly than the poorly human-infective H7N2 virus; the highly human-infective H1N1pdm virus replicated to a higher titer than the counterpart H1N1sw. Collectively, we developed differentiated human airway organoids which can morphologically and functionally simulate human airway epithelium. These differentiated airway organoids can be applied for rapid assessment of the infectivity of emerging respiratory viruses to human.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Siyuan Hao ◽  
Kang Ning ◽  
Cagla Aksu Kuz ◽  
Kai Vorhies ◽  
Ziying Yan ◽  
...  

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates throughout human airways. The polarized human airway epithelium (HAE) cultured at an airway-liquid interface (HAE-ALI) is an in vitro model mimicking the in vivo human mucociliary airway epithelium and supports the replication of SARS-CoV-2. Prior studies characterized only short-period SARS-CoV-2 infection in HAE. In this study, continuously monitoring the SARS-CoV-2 infection in HAE-ALI cultures for a long period of up to 51 days revealed that SARS-CoV-2 infection was long lasting with recurrent replication peaks appearing between an interval of approximately 7 to 10 days, which was consistent in all the tested HAE-ALI cultures derived from 4 lung bronchi of independent donors. We also identified that SARS-CoV-2 does not infect HAE from the basolateral side, and the dominant SARS-CoV-2 permissive epithelial cells are ciliated cells and goblet cells, whereas virus replication in basal cells and club cells was not detected. Notably, virus infection immediately damaged the HAE, which is demonstrated by dispersed zonula occludens-1 (ZO-1) expression without clear tight junctions and partial loss of cilia. Importantly, we identified that SARS-CoV-2 productive infection of HAE requires a high viral load of >2.5 × 105 virions per cm2 of epithelium. Thus, our studies highlight the importance of a high viral load and that epithelial renewal initiates and maintains a recurrent infection of HAE with SARS-CoV-2. IMPORTANCE The pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to >35 million confirmed cases and >1 million fatalities worldwide. SARS-CoV-2 mainly replicates in human airway epithelia in COVID-19 patients. In this study, we used in vitro cultures of polarized human bronchial airway epithelium to model SARS-CoV-2 replication for a period of 21 to 51 days. We discovered that in vitro airway epithelial cultures endure a long-lasting SARS-CoV-2 propagation with recurrent peaks of progeny virus release at an interval of approximately 7 to 10 days. Our study also revealed that SARS-CoV-2 infection causes airway epithelia damage with disruption of tight junction function and loss of cilia. Importantly, SARS-CoV-2 exhibits a polarity of infection in airway epithelium only from the apical membrane; it infects ciliated and goblet cells but not basal and club cells. Furthermore, the productive infection of SARS-CoV-2 requires a high viral load of over 2.5 × 105 virions per cm2 of epithelium. Our study highlights that the proliferation of airway basal cells and regeneration of airway epithelium may contribute to the recurrent infections.


2016 ◽  
Vol 311 (3) ◽  
pp. L581-L589 ◽  
Author(s):  
Liang-Jian Kuang ◽  
Ting-Ting Deng ◽  
Qin Wang ◽  
Shi-Lin Qiu ◽  
Yi Liang ◽  
...  

Dendritic cells and CD8+ T cells participate in the pathology of chronic obstructive pulmonary disease, including emphysema, but little is known of the involvement of the CD40/CD40L pathway. We investigated the role of the CD40/CD40L pathway in Tc1 cell differentiation induced by dendritic cells in a mouse model of emphysema, and in vitro. C57BL/6J wild-type and CD40−/− mice were exposed to cigarette smoke (CS) or not (control), for 24 wk. In vitro experiments involved wild-type and CD40−/− dendritic cells treated with CS extract (CSE) or not. Compared with the control groups, the CS mice (both wild type and CD40−/−) had a greater percentage of lung dendritic cells and higher levels of major histocompatability complex (MHC) class I molecules and costimulatory molecules CD40 and CD80. Relative to the CS CD40−/− mice, the CS wild type showed greater signs of lung damage and Tc1 cell differentiation. In vitro, the CSE-treated wild-type cells evidenced more cytokine release (IL-12/p70) and Tc1 cell differentiation than did the CSE-treated CD40−/− cells. Exposure to cigarette smoke increases the percentage of lung dendritic cells and promotes Tc1 cell differentiation via the CD40/CD40L pathway. Blocking the CD40/CD40L pathway may suppress development of emphysema in mice exposed to cigarette smoke.


Sign in / Sign up

Export Citation Format

Share Document