scholarly journals Recent Advances in Adipose Tissue Dysfunction and Its Role in the Pathogenesis of Non-Alcoholic Fatty Liver Disease

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3300
Author(s):  
Xiaoxiao Wang ◽  
Huiying Rao ◽  
Feng Liu ◽  
Lai Wei ◽  
Honggui Li ◽  
...  

Obesity is a serious ongoing health problem that significantly increases the incidence of nonalcoholic fatty liver disease (NAFLD). During obesity, adipose tissue dysfunction is obvious and characterized by increased fat deposition (adiposity) and chronic low-grade inflammation. The latter has been implicated to critically promote the development and progression of NAFLD, whose advanced form non-alcoholic steatohepatitis (NASH) is considered one of the most common causes of terminal liver diseases. This review summarizes the current knowledge on obesity-related adipose dysfunction and its roles in the pathogenesis of hepatic steatosis and inflammation, as well as liver fibrosis. A better understanding of the crosstalk between adipose tissue and liver under obesity is essential for the development of new and improved preventive and/or therapeutic approaches for managing NAFLD.

2021 ◽  
Vol 64 (1) ◽  
pp. 1-7
Author(s):  
Veronika Zubáňová ◽  
Zuzana Červinková ◽  
Otto Kučera ◽  
Vladimír Palička

Non-Alcoholic Fatty Liver Disease (NAFLD) is one of the most important causes of liver disease worldwide leading the foreground cause of liver transplantation. Recently miRNAs, small non-coding molecules were identified as an important player in the negative translational regulation of many protein-coding genes involved in hepatic metabolism. Visceral adipose tissue was found to take part in lipid and glucose metabolism and to release many inflammatory mediators that may contribute to progression of NAFLD from simple steatosis to Non-Alcoholic SteatoHepatitis. Since visceral adipose tissue enlargement and dysregulated levels of miRNAs were observed in patients with NAFLD, the aim of this paper is to reflect the current knowledge of the role of miRNAs released from visceral adipose tissue and NAFLD.


2021 ◽  
Author(s):  
Chun-Wei Lee ◽  
Chun-Ho Yun ◽  
Wen-Hung Huang ◽  
Ta-Chuan Hung ◽  
Cheng-Ting Tsai ◽  
...  

Abstract Background: Visceral adipose tissue (VAT) is associated with central obesity, insulin resistance and metabolic syndrome. However, the association of body-site specific adiposity and non-alcoholic fatty liver disease (NAFLD) has not been well characterized. Methods: We studies 704 consecutive subjects who underwent annual health survey in Taiwan. All subjects have been divided into three groups including normal (341), mild (227) and moderate (136) NAFLD according to ultrasound finding. Pericardial (PCF) and thoracic peri-aortic adipose tissue (TAT) burden was assessed using a non-contrast 16-slice multi-detector computed tomography (MDCT) dataset with off-line measurement (Aquarius 3DWorkstation, TeraRecon, SanMateo, CA, USA). We explored the relationship between PCF/TAT, NAFLD and cardiometabolic risk profiles.Result: Patients with moderate and mild NAFLD have greater volume of PCF (100.7±26.3vs. 77.1±21.3 vs. 61.7±21.6ml, P < 0.001) and TAT (11.2±4.1 vs. 7.6±2.6 vs. 5.5±2.6ml, P < 0.001) when compared to the normal groups. Both PCF and TAT remained independently associated with NAFLD after counting for age, sex, triglyceride, cholesterol and other cardiometabolic risk factors. In addition, both PCF and TAT provided incremental prediction value for NAFLD diagnosis. (AUROC: 0.85 and 0.87, 95%, confidence interval: 0.82-0.89 and 0.84-0.90). Conclusion: Both visceral adipose tissues strongly correlated with the severity of NAFLD. Compared to PCF, TAT is more tightly associated with NAFLD diagnosis in a large Asian population.


Author(s):  
Stella Tommasi ◽  
Ahmad Besaratinia

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of chronic liver disorders among adults, children, and adolescents, and a growing epidemic, worldwide. Notwithstanding the known susceptibility factors for NAFLD, i.e., obesity and metabolic syndrome, the exact cause(s) of this disease and the underlying mechanisms of its initiation and progression are not fully elucidated. NAFLD is a multi-faceted disease with metabolic, genetic, epigenetic, and environmental determinants. Accumulating evidence shows that exposure to environmental toxicants contributes to the development of NAFLD by promoting mitochondrial dysfunction and generating reactive oxygen species in the liver. Imbalances in the redox state of the cells are known to cause alterations in the patterns of 5-hydroxymethylcytosine (5hmC), the oxidative product of 5-methylcytosine (5mC), thereby influencing gene regulation. The 5hmC-mediated deregulation of genes involved in hepatic metabolism is an emerging area of research in NAFLD. This review summarizes our current knowledge on the interactive role of xenobiotic exposure and DNA hydroxymethylation in the pathogenesis of fatty liver disease. Increasing the mechanistic knowledge of NAFLD initiation and progression is crucial for the development of new and effective strategies for prevention and treatment of this disease.


2018 ◽  
Vol 1 (2) ◽  
pp. 24-28
Author(s):  
Tanita Suttichaimongkol

Non-alcoholic fatty liver disease (NAFLD) is a leading cause of death from liver cirrhosis, endstage liver disease, and hepatocellular carcinoma. It is also associated with increased cardiovasculardisease and cancer related mortality. While lifestyle modifications are the mainstay of treatment,only a proportion of patients are able to make due to difficult to achieve and maintain, and so moretreatment options are required such as pharmacotherapy. This review presents the drugs used inmanaging NAFLD and their pharmacologic targets. Therapies are currently directed towards improvingthe metabolic status of the liver, insulin resistance, cell oxidative stress, apoptosis, inflammation orfibrosis. Several agents are now in large clinical trials and within the next few years, the availability oftherapeutic options for NAFLD will be approved.     Keywords: nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, fibrosis, cirrhosis  


2020 ◽  
Vol 21 (6) ◽  
pp. 599-609 ◽  
Author(s):  
Longxin Qiu ◽  
Chang Guo

Aldose reductase (AR) has been reported to be involved in the development of nonalcoholic fatty liver disease (NAFLD). Hepatic AR is induced under hyperglycemia condition and converts excess glucose to lipogenic fructose, which contributes in part to the accumulation of fat in the liver cells of diabetes rodents. In addition, the hyperglycemia-induced AR or nutrition-induced AR causes suppression of the transcriptional activity of peroxisome proliferator-activated receptor (PPAR) α and reduced lipolysis in the liver, which also contribute to the development of NAFLD. Moreover, AR induction in non-alcoholic steatohepatitis (NASH) may aggravate oxidative stress and the expression of inflammatory cytokines in the liver. Here, we summarize the knowledge on AR inhibitors of plant origin and review the effect of some plant-derived AR inhibitors on NAFLD/NASH in rodents. Natural AR inhibitors may improve NAFLD at least in part through attenuating oxidative stress and inflammatory cytokine expression. Some of the natural AR inhibitors have been reported to attenuate hepatic steatosis through the regulation of PPARα-mediated fatty acid oxidation. In this review, we propose that the natural AR inhibitors are potential therapeutic agents for NAFLD.


2020 ◽  
Vol 16 ◽  
Author(s):  
Anna Bobrus- Chociej ◽  
Natalia Wasilewska ◽  
Marta Flisiak- Jackiewicz ◽  
Dariusz Lebensztejn

: Nonalcoholic fatty liver disease (NAFLD) is a main cause of chronic liver disease in children. With the global obesity epidemic, the prevalence of NAFLD is increasing both in industrialized and developing countries. NAFLD is a multisystem disorder and a hepatic manifestation of the metabolic syndrome. Growing scientific evidence suggests that NAFLD is an independent risk factor for cardiovascular disease. This paper briefly describes the current knowledge concerning the association between NAFLD and cardiac dysfunction in children.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nikolaj H. Schmidt ◽  
Pia Svendsen ◽  
Julián Albarrán-Juárez ◽  
Søren K. Moestrup ◽  
Jacob Fog Bentzon

AbstractNon-alcoholic fatty liver disease (NAFLD) is an increasingly prevalent condition that has been linked to high-fructose corn syrup consumption with induction of hepatic de novo lipogenesis (DNL) as the suggested central mechanism. Feeding diets very high in fructose (> 60%) rapidly induce several features of NAFLD in rodents, but similar diets have not yet been applied in larger animals, such as pigs. With the aim to develop a large animal NAFLD model, we analysed the effects of feeding a high-fructose (HF, 60% w/w) diet for four weeks to castrated male Danish Landrace-York-Duroc pigs. HF feeding upregulated expression of hepatic DNL proteins, but levels were low compared with adipose tissue. No steatosis or hepatocellular ballooning was seen on histopathological examination, and plasma levels of transaminases were similar between groups. Inflammatory infiltrates and the amount of connective tissue was slightly elevated in liver sections from fructose-fed pigs, which was corroborated by up-regulation of macrophage marker expression in liver homogenates. Supported by RNA-profiling, quantitative protein analysis, histopathological examination, and biochemistry, our data suggest that pigs, contrary to rodents and humans, are protected against fructose-induced steatosis by relying on adipose tissue rather than liver for DNL.


Sign in / Sign up

Export Citation Format

Share Document