scholarly journals Ascorbic Acid/Retinol and/or Inflammatory Stimuli’s Effect on Proliferation/Differentiation Properties and Transcriptomics of Gingival Stem/Progenitor Cells

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3310
Author(s):  
Karim M. Fawzy El-Sayed ◽  
Amira Bittner ◽  
Kristina Schlicht ◽  
Mohamed Mekhemar ◽  
Kim Enthammer ◽  
...  

The present study explored the effects of ascorbic-acid (AA)/retinol and timed inflammation on the stemness, the regenerative potential, and the transcriptomics profile of gingival mesenchymal stem/progenitor cells’ (G-MSCs). STRO-1 (mesenchymal stem cell marker) immuno-magnetically sorted G-MSCs were cultured in basic medium (control group), in basic medium with IL-1β (1 ng/mL), TNF-α (10 ng/mL) and IFN-γ (100 ng/mL, inflammatory-medium), in basic medium with AA (250 µmol/L) and retinol (20 µmol/L) (AA/retinol group) or in inflammatory medium with AA/retinol (inflammatory/AA/retinol group; n = 5/group). The intracellular levels of phosphorylated and total β-Catenin at 1 h, the expression of stemness genes over 7 days, the number of colony-forming units (CFUs) as well as the cellular proliferation aptitude over 14 days, and the G-MSCs’ multilineage differentiation potential were assessed. Next-generation sequencing was undertaken to elaborate on up-/downregulated genes and altered intracellular pathways. G-MSCs demonstrated all mesenchymal stem/progenitor cells characteristics. Controlled inflammation with AA/retinol significantly elevated NANOG (p < 0.05). The AA/retinol-mediated reduction in intracellular phosphorylated β-Catenin was restored through the effect of controlled inflammation (p < 0.05). Cellular proliferation was highest in the AA/retinol group (p < 0.05). AA/retinol counteracted the inflammation-mediated reduction in G-MSCs’ clonogenic ability and CFUs. Amplified chondrogenic differentiation was observed in the inflammatory/AA/retinol group. At 1 and 3 days, the differentially expressed genes were associated with development, proliferation, and migration (FOS, EGR1, SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), survival (EGR1, SGK1, TMEM132A), differentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS, PSAT1), inflammation and MHC-II antigen processing (PER1, CTSS, CD74) and intracellular pathway activation (FKBP5, ZNF404). Less as well as more genes were activated the longer the G-MSCs remained in the inflammatory medium or AA/retinol, respectively. Combined, current results point at possibly interesting interactions between controlled inflammation or AA/retinol affecting stemness, proliferation, and differentiation attributes of G-MSCs.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Karim M. Fawzy El-Sayed ◽  
Nhung Nguyen ◽  
Christof E. Dörfer

Objective. Ascorbic acid (AA) and controlled inflammatory stimuli are postulated to possess the ability to independently exert positive effects on a variety of proliferative, pluripotency, and differentiation attributes of gingival mesenchymal stem/progenitor cells (G-MSCs). The current study’s objective was to explore and compare for the first time the impact of the major inflammatory cytokines (IL-1β/TNF-α/IFN-γ), AA, or their combination on multipotency/pluripotency, proliferative, and differentiation characteristics of G-MSCs. Design. Human G-MSCs (n=5) were isolated and cultured in basic medium (control group), in basic medium with major inflammatory cytokines; 1 ng/ml IL-1β, 10 ng/ml TNF-α, and 100 ng/ml IFN-γ (inflammatory group), in basic medium with 250 μmol/l AA (AA group) and in inflammatory medium supplemented by AA (inflammatory/AA group). All media were renewed three times per week. In stimulated G-MSCs intracellular β-catenin at 1 hour, pluripotency gene expression at 1, 3, and 5 days, as well as colony-forming units (CFUs) ability and cellular proliferation over 14 days were examined. Following a five-days stimulation in the designated groups, multilineage differentiation was assessed via qualitative and quantitative histochemistry as well as mRNA expression. Results. β-Catenin significantly decreased intracellularly in all experimental groups (p=0.002, Friedman). AA group exhibited significantly higher cellular counts on days 3, 6, 7, and 13 (p<0.05) and the highest CFUs at 14 days [median-CFUs (Q25/Q75); 40 (15/50), p=0.043]. Significantly higher Nanog expression was noted in AA group [median gene-copies/PGK1 (Q25/Q75); 0.0006 (0.0002/0.0007), p<0.01, Wilcoxon-signed-rank]. Significant multilineage differentiation abilities, especially into osteogenic and chondrogenic directions, were further evident in the AA group. Conclusions. AA stimulation enhances G-MSCs’ stemness, proliferation, and differentiation properties, effects which are associated with a Wnt/β-catenin signaling pathway activation. Apart from initially boosting cellular metabolism as well as Sox2 and Oct4A pluripotency marker expression, inflammation appeared to attenuate these AA-induced positive effects. Current results reveal that for AA to exert its beneficial effects on G-MSCs’ cellular attributes, it requires to act in an inflammation-free microenvironment.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Fan Zhang ◽  
Misi Si ◽  
Huiming Wang ◽  
Mohamed K. Mekhemar ◽  
Christof E. Dörfer ◽  
...  

Cytokines play major roles in tissue destruction/repair. The present study investigates proliferative and osteogenic differentiation potentials of gingival mesenchymal stem/progenitor cells (G-MSCs), influenced by IL-1/TNF-αinflammatory/anti-inflammatory conditions. Human G-MSCs were isolated, characterized, and cultured in basic medium (control group, M1), in basic medium with IL-1β, TNF-α, and IFN-γ(inflammatory group, M2) and with IL-1ra/TNF-αi added to M2 (anti-inflammatory group, M3). MTT tests at days 1, 3, and 7 and CFU assay at day 12 were conducted. Osteogenic differentiation was analyzed by bone-specific transcription factors (RUNX2), alkaline phosphatase (ALP), type I collagen (Col-I), osteopontin (OPN), and osteonectin (ON) expression at days 1, 3, 7, and 14 and Alizarin red staining at day 14. At day 3, the control group showed the highest cell numbers. At day 7, cell numbers in inflammatory and anti-inflammatory group outnumbered the control group. At day 12, CFUs decreased in the inflammatory and anti-inflammatory groups, with altered cellular morphology. The anti-inflammatory group demonstrated elevated bone-specific transcription factors at 14 days. After 14 days of osteogenic induction, calcified nodules in the anti-inflammatory group were higher compared to control and inflammatory groups. For regeneration, initial inflammatory stimuli appear essential for G-MSCs’ proliferation. With inflammatory persistence, this positive effect perishes and is followed by a short-term stimulatory one on osteogenesis. At this stage, selective anti-inflammatory intervention could boost G-MSCs’ differentiation.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 5-11 ◽  
Author(s):  
Eun Y. Jung ◽  
Sung C. Jun ◽  
Un J. Chang ◽  
Hyung J. Suh

Previously, we have found that the addition of L-ascorbic acid to chitosan enhanced the reduction in body weight gain in guinea pigs fed a high-fat diet. We hypothesized that the addition of L-ascorbic acid to chitosan would accelerate the reduction of body weight in humans, similar to the animal model. Overweight subjects administered chitosan with or without L-ascorbic acid for 8 weeks, were assigned to three groups: Control group (N = 26, placebo, vehicle only), Chito group (N = 27, 3 g/day chitosan), and Chito-vita group (N = 27, 3 g/day chitosan plus 2 g/day L-ascorbic acid). The body weights and body mass index (BMI) of the Chito and Chito-vita groups decreased significantly (p < 0.05) compared to the Control group. The BMI of the Chito-vita group decreased significantly compared to the Chito group (Chito: -1.0 kg/m2 vs. Chito-vita: -1.6 kg/m2, p < 0.05). The results showed that the chitosan enhanced reduction of body weight and BMI was accentuated by the addition of L-ascorbic acid. The fat mass, percentage body fat, body circumference, and skinfold thickness in the Chito and Chito-vita groups decreased more than the Control group; however, these parameters were not significantly different between the three groups. Chitosan combined with L-ascorbic acid may be useful for controlling body weight.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Manal Nabil Hagar ◽  
Farinawati Yazid ◽  
Nur Atmaliya Luchman ◽  
Shahrul Hisham Zainal Ariffin ◽  
Rohaya Megat Abdul Wahab

Abstract Background Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group. Methodology The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture). Results The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p < 0.01) in SHED as compared to DPSC and MC3T3-E1 in 2D and 3D cultures. Conclusion gHA scaffold is an optimal scaffold as it induced osteogenesis in vitro. Besides, SHED had the highest osteogenic potential making them a preferred candidate for tissue engineering in comparison with DPSC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qing Xia ◽  
Xiangtian Ling ◽  
Zhonghao Wang ◽  
Tao Shen ◽  
Minghao Chen ◽  
...  

Abstract Purpose and background Recently, we found that maximal medial rectus recession and lateral rectus resection in patients with complete lateral rectus paralysis resulted in a partial restoration of abduction. In an attempt to understand some of the mechanisms involved with this effect we examined gene expression profiles of lateral recti from these patients, with our focus being directed to genes related to myogenesis. Materials and methods Lateral recti resected from patients with complete lateral rectus paralysis and those from concomitant esotropia (controls) were collected. Differences in gene expression profiles between these two groups were examined using microarray analysis and quantitative Reverse-transcription PCR (qRT-PCR). Results A total of 3056 differentially expressed genes (DEGs) were identified between these two groups. Within the paralytic esotropia group, 2081 genes were up-regulated and 975 down-regulated. The results of RT-PCR revealed that PAX7, MYOG, PITX1, SIX1 and SIX4 showed higher levels of expression, while that of MYOD a lower level of expression within the paralytic esotropia group as compared with that in the control group (p < 0.05). Conclusion The decreased expression of MYOD in the paralytic esotropia group suggested that extraocular muscle satellite cell (EOMSCs) differentiation processes were inhibited. Whereas the high expression levels of PAX7, SIX1/4 and MYOG, suggested that the EOMSCs were showing an effective potential for differentiation. The stimulation resulting from muscle surgery may induce EOMSCs to differentiate and thus restore abduction function.


2021 ◽  
Vol 22 (7) ◽  
pp. 3505
Author(s):  
Flavy Roseren ◽  
Martine Pithioux ◽  
Stéphane Robert ◽  
Laure Balasse ◽  
Benjamin Guillet ◽  
...  

Granulocyte colony-stimulating factor (G-CSF) was shown to promote bone regeneration and mobilization of vascular and osteogenic progenitor cells. In this study, we investigated the effects of a systemic low dose of G-CSF on both bone consolidation and mobilization of hematopoietic stem/progenitor cells (HSPCs), endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs) in a rat model of distraction osteogenesis (DO). Neovascularization and mineralization were longitudinally monitored using positron emission tomography and planar scintigraphy. Histological analysis was performed and the number of circulating HSPCs, EPCs and MSCs was studied by flow cytometry. Contrary to control group, in the early phase of consolidation, a bony bridge with lower osteoclast activity and a trend of an increase in osteoblast activity were observed in the distracted callus in the G-CSF group, whereas, at the late phase of consolidation, a significantly lower neovascularization was observed. While no difference was observed in the number of circulating EPCs between control and G-CSF groups, the number of MSCs was significantly lower at the end of the latency phase and that of HSPCs was significantly higher 4 days after the bone lengthening. Our results indicate that G-CSF accelerates bone regeneration and modulates mobilization of progenitor cells during DO.


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 607
Author(s):  
Rudolfs Janis Viksne ◽  
Gunta Sumeraga ◽  
Mara Pilmane

Background and Objectives: Chronic rhinosinusitis (CRS) is a condition that affects as much as 10.9% of the population and, along with presence of nasal polyps, is associated with significant morbidity and decreased quality of life. Studies on molecular pathways that have been activated in nasal polyp tissue are mainly based on cytokine concentration detection. Therefore, our aim is to investigate the complex appearance, relative distribution and interlinks of IL-1, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12 and Ki 67 in chronic rhinosinusitis with nasal polyps (CRSwNP) affected human nasal mucosa. Materials and Methods: Samples of nasal polyps were obtained from 12 patients with previously diagnosed CRSwNP and no prior surgery. Control group consisted of samples from 17 otherwise healthy individuals with isolated nasal septum deviation. Tissues were stained for IL-1, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12 and Ki67 immunohistochemically. Non-parametric statistic, Mann–Whitney U test and Spearman’s rank correlation coefficient were used. Results: All factors, except connective tissue cytokine IL-10 and proliferation marker Ki-67, had increased presence in connective tissue and decreased presence in epithelium of nasal polyps when compared to controls. Very strong and strong positive correlations between factors were observed. Conclusions: Decreased appearance of IL-1α, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12 positive structures in the nasal epithelium with selective increase of IL-1α and IL-12 in nasal subepithelial connective tissue characterize the cytokine endotype with dysfunctional epithelial barrier and local stimulation of immune response in the connective tissue in case of chronic rhinosinusitis with polyps. Decrease of IL-6 in both—epithelium and connective tissue with strong correlation between it and IL-7 and IL-10 in connective tissue suggests significant stimulation of this regulatory cytokine and, possibly, the important role in pathogenesis of the development in nasal polyps. Correlations between Ki67 and cytokines indicate possible involvement of IL-4, IL-7 and IL-12 in regulation of cellular proliferation.


Sign in / Sign up

Export Citation Format

Share Document