scholarly journals Plant Viruses Can Alter Aphid-Triggered Calcium Elevations in Infected Leaves

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3534
Author(s):  
Christiane Then ◽  
Fanny Bellegarde ◽  
Geoffrey Schivre ◽  
Alexandre Martinière ◽  
Jean-Luc Macia ◽  
...  

Alighting aphids probe a new host plant by intracellular test punctures for suitability. These induce immediate calcium signals that emanate from the punctured sites and might be the first step in plant recognition of aphid feeding and the subsequent elicitation of plant defence responses. Calcium is also involved in the transmission of non-persistent plant viruses that are acquired by aphids during test punctures. Therefore, we wanted to determine whether viral infection alters calcium signalling. For this, calcium signals triggered by aphids were imaged on transgenic Arabidopsis plants expressing the cytosolic FRET-based calcium reporter YC3.6-NES and infected with the non-persistent viruses cauliflower mosaic (CaMV) and turnip mosaic (TuMV), or the persistent virus, turnip yellows (TuYV). Aphids were placed on infected leaves and calcium elevations were recorded by time-lapse fluorescence microscopy. Calcium signal velocities were significantly slower in plants infected with CaMV or TuMV and signal areas were smaller in CaMV-infected plants. Transmission tests using CaMV-infected Arabidopsis mutants impaired in pathogen perception or in the generation of calcium signals revealed no differences in transmission efficiency. A transcriptomic meta-analysis indicated significant changes in expression of receptor-like kinases in the BAK1 pathway as well as of calcium channels in CaMV- and TuMV-infected plants. Taken together, infection with CaMV and TuMV, but not with TuYV, impacts aphid-induced calcium signalling. This suggests that viruses can modify plant responses to aphids from the very first vector/host contact.

2008 ◽  
Vol 363 (1495) ◽  
pp. 1401-1418 ◽  
Author(s):  
Michael Whitaker

The onset of development in most species studied is triggered by one of the largest and longest calcium transients known to us. It is the most studied and best understood aspect of the calcium signals that accompany and control development. Its properties and mechanisms demonstrate what embryos are capable of and thus how the less-understood calcium signals later in development may be generated. The downstream targets of the fertilization calcium signal have also been identified, providing some pointers to the probable targets of calcium signals further on in the process of development. In one species or another, the fertilization calcium signal involves all the known calcium-releasing second messengers and many of the known calcium-signalling mechanisms. These calcium signals also usually take the form of a propagating calcium wave or waves. Fertilization causes the cell cycle to resume, and therefore fertilization signals are cell-cycle signals. In some early embryonic cell cycles, calcium signals also control the progress through each cell cycle, controlling mitosis. Studies of these early embryonic calcium-signalling mechanisms provide a background to the calcium-signalling events discussed in the articles in this issue.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alejandro Garcia ◽  
M. Estrella Santamaria ◽  
Isabel Diaz ◽  
Manuel Martinez

AbstractThe success in the response of a plant to a pest depends on the regulatory networks that connect plant perception and plant response. Meta-analyses of transcriptomic responses are valuable tools to discover novel mechanisms in the plant/herbivore interplay. Considering the quantity and quality of available transcriptomic analyses, Arabidopsis thaliana was selected to test the ability of comprehensive meta-analyses to disentangle plant responses. The analysis of the transcriptomic data showed a general induction of biological processes commonly associated with the response to herbivory, like jasmonate signaling or glucosinolate biosynthesis. However, an uneven induction of many genes belonging to these biological categories was found, which was likely associated with the particularities of each specific Arabidopsis-herbivore interaction. A thorough analysis of the responses to the lepidopteran Pieris rapae and the spider mite Tetranychus urticae highlighted specificities in the perception and signaling pathways associated with the expression of receptors and transcription factors. This information was translated to a variable alteration of secondary metabolic pathways. In conclusion, transcriptomic meta-analysis has been revealed as a potent way to sort out relevant physiological processes in the plant response to herbivores. Translation of these transcriptomic-based analyses to crop species will permit a more appropriate design of biotechnological programs.


Author(s):  
Martin Solanský ◽  
Kamil Mikulášek ◽  
Martina Zapletalová ◽  
Marek Petřivalský ◽  
Annick Chiltz ◽  
...  

Abstract Successful plant defence against microbial pathogens is based on early recognition and fast activation of inducible responses. Key mechanisms include detection of microbe-associated molecular patterns by membrane-localized Pattern Recognition Receptors that induce a basal resistance response. A well-described model of such responses to pathogens involves interaction between Solanaceae plants with proteinaceous elicitors secreted by oomycetes, called elicitins. It has been hypothesised that elicitins' formation of oligomeric structures could be involved in their recognition and activation of defensive transduction cascades. In tests of this hypothesis reported here, using several approaches, we observed differences in tobacco plant responses induced by the elicitin β-cryptogein (β-CRY) and its homodimer (β-CRY DIM). We also found that the C-terminal domain of elicitins of other ELI clades plays a significant role in stabilization of their oligomeric structure and restraint in the cell wall. In addition, covalently crosslinking β-CRY DIM impaired formation of signalling complexes, thereby reducing its capacity to elicit the hypersensitive response and resistance in the host plant, with no significant changes in pathogenesis-related protein expression. The results illuminate the poorly understood role of elicitins' oligomeric structures in oomycetes' interaction with plants, by revealing details of effects of β-CRY dimerization on tobacco plants' recognition and defence responses.


2005 ◽  
Vol 392 (3) ◽  
pp. 537-544 ◽  
Author(s):  
Santiago Cavero ◽  
Javier Traba ◽  
Araceli Del Arco ◽  
Jorgina Satrústegui

Sal1p is a mitochondrial protein that belongs to the SCaMC (short calcium-binding mitochondrial carrier) subfamily of mitochondrial carriers. The presence of calcium-binding motifs facing the extramitochondrial space allows the regulation of the transport activity of these carriers by cytosolic calcium and provides a new mechanism to transduce calcium signals in mitochondria without the requirement of calcium entry in the organelle. We have studied its transport activity, finding that it is a carboxyatractyloside-resistant ATP-Mg carrier. Mitochondria from a disruption mutant of SAL1 have a 50% reduction in the uptake of ATP. We have also found a clear stimulation of ATP-transport activity by calcium, with an S0.5 of approx. 30 μM. Our results also suggest that Sal1p is a target of the glucose-induced calcium signal which is non-essential in wild-type cells, but becomes essential for transport of ATP into mitochondria in yeast lacking ADP/ATP translocases.


Author(s):  
Janaina da Silva Fortirer ◽  
Adriana Grandis ◽  
Camila de Toledo Castanho ◽  
Marcos Silveira Buckeridge

Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1371-1374 ◽  
Author(s):  
Carmen Gispert ◽  
George N. Oldfield ◽  
Thomas M. Perring ◽  
Rebecca Creamer

Experiments were undertaken to elucidate the characteristics of the transmission of peach mosaic virus (PMV) by Eriophyes insidiosus. Transmission efficiency by single E. insidiosus was as high as 17%. The minimum inoculation access period was between 3 and 6 h. E. insidiosus acquired the virus after a minimum acquisition access period of 3 days. No latent period was demonstrated. While most plant viruses which are transmitted by eriophyid mites are transmitted in a persistent mode, our data are more consistent with a semipersistent model.


2018 ◽  
Author(s):  
Frédérique Van Gijsegem ◽  
Frédérique Bitton ◽  
Anne-Laure Laborie ◽  
Yvan Kraepiel ◽  
Jacques Pédron

AbstractTo draw a global view of plant responses to interactions with the phytopathogenic enterobacterale Dickeya dadantii, a causal agent of soft rot diseases on many plant species, we analysed the early Arabidopsis responses to D. dadantii infection. We performed a genome-wide analysis of the Arabidopsis thaliana transcriptome during D. dadantii infection and conducted a genetic study of identified responses.A limited set of genes related to plant defence or interactions with the environment were induced at an early stage of infection, with an over-representation of genes involved in both the metabolism of indole glucosinolates (IGs) and the jasmonate (JA) defence pathway. Bacterial type I and type II secretion systems are required to trigger the induction of IG and JA-related genes while the type III secretion system appears to partially inhibit these defence pathways. Using Arabidopsis mutants impaired in JA biosynthesis or perception, we showed that induction of some IG metabolism genes was COI1-dependent but, surprisingly, JA-independent. Moreover, characterisation of D. dadantii disease progression in Arabidopsis mutants impaired in JA or IG pathways showed that JA triggers an efficient plant defence response that does not involve IGs.The induction of the IG pathway by bacterial pathogens has been reported several times in vitro. This study shows for the first time, that this induction does indeed occur in planta, but also that this line of defence is ineffective against D. dadantii infection, in contrast to its role to counteract herbivorous or fungal pathogen attacks.


2009 ◽  
Vol 90 (10) ◽  
pp. 2536-2541 ◽  
Author(s):  
H. Guilley ◽  
D. Bortolamiol ◽  
G. Jonard ◽  
S. Bouzoubaa ◽  
V. Ziegler-Graff

To counteract plant defence mechanisms, plant viruses have evolved to encode RNA silencing suppressor (RSS) proteins. These proteins can be identified by a range of silencing suppressor assays. Here, we describe a simple method using beet necrotic yellow vein virus (BNYVV) that allows a rapid screening of RSS activity. The viral inoculum consisted of BNYVV RNA1, which encodes proteins involved in viral replication, and two BNYVV-derived replicons: rep3–P30, which expresses the movement protein P30 of tobacco mosaic virus, and rep5–X, which allows the expression of a putative RSS (X). This approach has been validated through the use of several known RSSs. Two potential candidates have been tested and we show that, in our system, the P13 protein of burdock mottle virus displays RSS activity while the P0 protein of cereal yellow dwarf virus-RPV does not.


2018 ◽  
Vol 25 (2) ◽  
pp. 253-267 ◽  
Author(s):  
Sandra Fonseca ◽  
Dhanya Radhakrishnan ◽  
Kalika Prasad ◽  
Andrea Chini

Living organisms are part of a highly interconnected web of interactions, characterised by species nurturing, competing, parasitizing and preying on one another. Plants have evolved cooperative as well as defensive strategies to interact with neighbour organisms. Among these, the plant-fungus associations are very diverse, ranging from pathogenic to mutualistic. Our current knowledge of plant-fungus interactions suggests a sophisticated coevolution to ensure dynamic plant responses to evolving fungal mutualistic/pathogenic strategies. The plant-fungus communication relies on a rich chemical language. To manipulate the plant defence mechanisms, fungi produce and secrete several classes of biomolecules, whose modeof- action is largely unknown. Upon perception of the fungi, plants produce phytohormones and a battery of secondary metabolites that serve as defence mechanism against invaders or to promote mutualistic associations. These mutualistic chemical signals can be co-opted by pathogenic fungi for their own benefit. Among the plant molecules regulating plant-fungus interaction, phytohormones play a critical role since they modulate various aspects of plant development, defences and stress responses. Intriguingly, fungi can also produce phytohormones, although the actual role of fungalproduced phytohormones in plant-fungus interactions is poorly understood. Here, we discuss the recent advances in fungal production of phytohormone, their putative role as endogenous fungal signals and how fungi manipulate plant hormone balance to their benefits.


Sign in / Sign up

Export Citation Format

Share Document