scholarly journals hiPSCs Derived Cardiac Cells for Drug and Toxicity Screening and Disease Modeling: What Micro- Electrode-Array Analyses Can Tell Us

Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1331 ◽  
Author(s):  
Kussauer ◽  
David ◽  
Lemcke

Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) have been intensively used in drug development and disease modeling. Since iPSC-cardiomyocyte (CM) was first generated, their characterization has become a major focus of research. Multi-/micro-electrode array (MEA) systems provide a non-invasive user-friendly platform for detailed electrophysiological analysis of iPSC cardiomyocytes including drug testing to identify potential targets and the assessment of proarrhythmic risk. Here, we provide a systematical overview about the physiological and technical background of micro-electrode array measurements of iPSC-CM. We introduce the similarities and differences between action- and field potential and the advantages and drawbacks of MEA technology. In addition, we present current studies focusing on proarrhythmic side effects of novel and established compounds combining MEA systems and iPSC-CM. MEA technology will help to open a new gateway for novel therapies in cardiovascular diseases while reducing animal experiments at the same time.

2021 ◽  
Vol 8 ◽  
Author(s):  
Lu Wang ◽  
Vahid Serpooshan ◽  
Jianyi Zhang

Tissue engineering combines principles of engineering and biology to generate living tissue equivalents for drug testing, disease modeling, and regenerative medicine. As techniques for reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) and subsequently differentiating them into cardiomyocytes and other cardiac cells have become increasingly efficient, progress toward the development of engineered human cardiac muscle patch (hCMP) and heart tissue analogs has accelerated. A few pilot clinical studies in patients with post-infarction LV remodeling have been already approved. Conventional methods for hCMP fabrication include suspending cells within scaffolds, consisting of biocompatible materials, or growing two-dimensional sheets that can be stacked to form multilayered constructs. More recently, advanced technologies, such as micropatterning and three-dimensional bioprinting, have enabled fabrication of hCMP architectures at unprecedented spatiotemporal resolution. However, the studies working on various hCMP-based strategies for in vivo tissue repair face several major obstacles, including the inadequate scalability for clinical applications, poor integration and engraftment rate, and the lack of functional vasculature. Here, we review many of the recent advancements and key concerns in cardiac tissue engineering, focusing primarily on the production of hCMPs at clinical/industrial scales that are suitable for administration to patients with myocardial disease. The wide variety of cardiac cell types and sources that are applicable to hCMP biomanufacturing are elaborated. Finally, some of the key challenges remaining in the field and potential future directions to address these obstacles are discussed.


2020 ◽  
Vol 21 (23) ◽  
pp. 8893
Author(s):  
Junjun Li ◽  
Ying Hua ◽  
Shigeru Miyagawa ◽  
Jingbo Zhang ◽  
Lingjun Li ◽  
...  

Relevant, predictive normal, or disease model systems are of vital importance for drug development. The difference between nonhuman models and humans could contribute to clinical trial failures despite ideal nonhuman results. As a potential substitute for animal models, human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) provide a powerful tool for drug toxicity screening, modeling cardiovascular diseases, and drug discovery. Here, we review recent hiPSC-CM disease models and discuss the features of hiPSC-CMs, including subtype and maturation and the tissue engineering technologies for drug assessment. Updates from the international multisite collaborators/administrations for development of novel drug discovery paradigms are also summarized.


2020 ◽  
Vol 21 (23) ◽  
pp. 8910 ◽  
Author(s):  
Romana Zahumenska ◽  
Vladimir Nosal ◽  
Marek Smolar ◽  
Terezia Okajcekova ◽  
Henrieta Skovierova ◽  
...  

One of the greatest breakthroughs of regenerative medicine in this century was the discovery of induced pluripotent stem cell (iPSC) technology in 2006 by Shinya Yamanaka. iPSCs originate from terminally differentiated somatic cells that have newly acquired the developmental capacity of self-renewal and differentiation into any cells of three germ layers. Before iPSCs can be used routinely in clinical practice, their efficacy and safety need to be rigorously tested; however, iPSCs have already become effective and fully-fledged tools for application under in vitro conditions. They are currently routinely used for disease modeling, preparation of difficult-to-access cell lines, monitoring of cellular mechanisms in micro- or macroscopic scales, drug testing and screening, genetic engineering, and many other applications. This review is a brief summary of the reprogramming process and subsequent differentiation and culture of reprogrammed cells into neural precursor cells (NPCs) in two-dimensional (2D) and three-dimensional (3D) conditions. NPCs can be used as biomedical models for neurodegenerative diseases (NDs), which are currently considered to be one of the major health problems in the human population.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1953
Author(s):  
Robert F. Halliwell ◽  
Hamed Salmanzadeh ◽  
Leanne Coyne ◽  
William S. Cao

Human stem cell-derived neurons are increasingly considered powerful models in drug discovery and disease modeling, despite limited characterization of their molecular properties. Here, we have conducted a detailed study of the properties of a commercial human induced Pluripotent Stem Cell (iPSC)-derived neuron line, iCell [GABA] neurons, maintained for up to 3 months in vitro. We confirmed that iCell neurons display neurite outgrowth within 24 h of plating and label for the pan-neuronal marker, βIII tubulin within the first week. Our multi-electrode array (MEA) recordings clearly showed neurons generated spontaneous, spike-like activity within 2 days of plating, which peaked at one week, and rapidly decreased over the second week to remain at low levels up to one month. Extracellularly recorded spikes were reversibly inhibited by tetrodotoxin. Patch-clamp experiments showed that iCell neurons generated spontaneous action potentials and expressed voltage-gated Na and K channels with membrane capacitances, resistances and membrane potentials that are consistent with native neurons. Our single neuron recordings revealed that reduced spiking observed in the MEA after the first week results from development of a dominant inhibitory tone from GABAergic neuron circuit maturation. GABA evoked concentration-dependent currents that were inhibited by the convulsants, bicuculline and picrotoxin, and potentiated by the positive allosteric modulators, diazepam, chlordiazepoxide, phenobarbital, allopregnanolone and mefenamic acid, consistent with native neuronal GABAA receptors. We also show that glycine evoked robust concentration-dependent currents that were inhibited by the neurotoxin, strychnine. Glutamate, AMPA, Kainate and NMDA each evoked concentration-dependent currents in iCell neurons that were blocked by their selective antagonists, consistent with the expression of ionotropic glutamate receptors. The NMDA currents required the presence of the co-agonist glycine and were blocked in a highly voltage-dependent manner by Mg2+ consistent with the properties of native neuronal NMDA receptors. Together, our data suggest that such human iPSC-derived neurons may have significant value in drug discovery and development and may eventually largely replace the need for animal tissues in human biomedical research.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Yiqiang Zhang ◽  
Jong-Seob Choi ◽  
Alec Smith ◽  
Robb MacLellan ◽  
Deok-Ho Kim ◽  
...  

Background: Human induced pluripotent stem cells (hiPSCs) are widely used in studies of developmental and regenerative biomedicine involving various cell types, including cardiomyocytes (CMs). Understanding the cellular and molecular processes during hiPSC-CM differentiation and maturation will be crucial to develop heart regeneration therapies. In addition, while bioengineered cellular cues have been shown to modulate cellular morphology and phenotypes, little is known regarding their effects on molecular and functional maturity of hiPSC-CMs. Aims: To determine the expression of cardiac and cell cycle genes and the electrophysiological properties of hiPSC-CMs during their differentiation and maturation on unpatterned (Flat) or isotropic/nanopatterned (Nano) cell culture surface. Methods and Results: Using small molecules, WTC-11 hiPSC were differentiated into CMs efficiently (92.5% TNNT2 + ; 95% NKX2-5 + ). The resultant hiPSC-CMs were re-plated in Flat or Nano surfaces and harvested at different time points. Cardiac genes Myh7, Tnnt2, Serca2a, Ryr2, Cacna1c , and Kcnj2 gradually and significantly increased during differentiation; this was accompanied by reduced expression of cell cycle genes. While myofilament genes expressions were similar between Nano and Flat cultured hiPSC-CMs, ion channel genes Scn5a, Cacna1c , and Kcnj2 were significantly higher in Nano group, suggesting that Nano cultured CMs were more matured. In addition, fewer hiPSC-CMs were proliferative (EdU + ) in 2-week Nano group compared to Flat group. This was associated with decreased expression of active cell cycle genes Ccne1, Cdk4, Cdk14, Ki67 and Plk1 in Nano 2-week CMs. Micro-electrode array (MEA) analysis demonstrated that Beat Period, Spike Amplitude, and Field Potential Duration were increased in the Nano group. Fluo-4 Ca 2+ imaging assay revealed improved Ca 2+ transition activities in isotropically cultured hiPSC-CMs. Conclusion: These results demonstrate a significant upregulation of cardiac genes along with a down-regulation of cell cycle genes during the differentiation and maturation of hiPSC-CM on Nano surfaces. Bioengineered nanotopographically patterned substrates promoted the maturation and electrophysiological functions of hiPSC-CMs.


2021 ◽  
Vol 7 (2) ◽  
pp. 311-314
Author(s):  
Robert Mau ◽  
Sophie Kussauer ◽  
Uta Matzmohr ◽  
Robert David ◽  
Hermann Seitz

Abstract Micro-electrode array (MEA) systems are noninvasive platforms for the investigation of electrophysiological properties of cell layers, such as spontaneously active cardiomyocytes. An MEA chip is composed of two-dimensional grids of dot-like electrodes embedded into glass. Here we present a test setup featuring a customised two-chamber silicone overlay. The overlay is designed to be placed on an MEA with two separate electrode fields and enables the seeding of two distinct cell sub-types on the MEA for synchronised drug testing applications while giving the possibility of analysing intersubtype-specific cellular interactions. The overlay has a full size of 10 x 10 x 5 mm (width x length x height), each chamber has a size of 2.5 x 6 x 5 mm (V = 75 mm³). The chambers are separated by a wall with a thickness of 0.3 mm. The overlay was manufactured via silicone-casting, utilising a 3D printed model. The model is 3D printed via high accurate digital light processing (DLP). In addition, a DLP 3D printed cover optimises the attachment of the overlay on an MEA. A proofof- principle of the utilisation of the overlay is demonstrated.


2021 ◽  
Author(s):  
Wener Li ◽  
Xiaojing Luo ◽  
Ying Ulbricht ◽  
Kaomei Guan

Recently, there have been great advances in cardiovascular channelopathy modeling and drug safety pharmacology using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The automated patch-clamp (APC) technique overcomes the disadvantages of manual patch-clamp (MPC) such as labor intensive and low output. However, it was not clear whether the data generated by using the APC could be reliably used for iPSC-CM disease modeling. In this study, we improved the iPSC-CM preparation method by applying blebbistatin (BB, an excitation-contraction coupling uncoupler) in the whole APC procedures (dissociation, filtration, storage, and recording). Under non-BB buffered condition, iPSC-CMs in suspension showed a severe bleb-like morphology, however, BB-supplement leads to significant improvements in morphology and INa recording. We observe no effects of BB on action potential and field potential. Furthermore, APC faithfully recapitulates the single-cell electrophysiological phenotypes of iPSC-CMs derived from Brugada syndrome patients, as detected with MPC. Our study indicates that APC is capable of replacing MPC in the modeling of cardiac channelopathies using human iPSC-CMs by providing high quality data with higher throughput.


2021 ◽  
Vol 22 (15) ◽  
pp. 8196
Author(s):  
Dorit Trudler ◽  
Swagata Ghatak ◽  
Stuart A. Lipton

Neurodegenerative diseases affect millions of people worldwide and are characterized by the chronic and progressive deterioration of neural function. Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), represent a huge social and economic burden due to increasing prevalence in our aging society, severity of symptoms, and lack of effective disease-modifying therapies. This lack of effective treatments is partly due to a lack of reliable models. Modeling neurodegenerative diseases is difficult because of poor access to human samples (restricted in general to postmortem tissue) and limited knowledge of disease mechanisms in a human context. Animal models play an instrumental role in understanding these diseases but fail to comprehensively represent the full extent of disease due to critical differences between humans and other mammals. The advent of human-induced pluripotent stem cell (hiPSC) technology presents an advantageous system that complements animal models of neurodegenerative diseases. Coupled with advances in gene-editing technologies, hiPSC-derived neural cells from patients and healthy donors now allow disease modeling using human samples that can be used for drug discovery.


Sign in / Sign up

Export Citation Format

Share Document