scholarly journals Investigating the Potential and Pitfalls of EV-Encapsulated MicroRNAs as Circulating Biomarkers of Breast Cancer

Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 141 ◽  
Author(s):  
Brian M. Moloney ◽  
Katie E. Gilligan ◽  
Doireann P. Joyce ◽  
Clodagh P. O’Neill ◽  
Killian P. O’Brien ◽  
...  

Extracellular vesicles (EVs) shuttle microRNA (miRNA) throughout the circulation and are believed to represent a fingerprint of the releasing cell. We isolated and characterized serum EVs of breast tumour-bearing animals, breast cancer (BC) patients, and healthy controls. EVs were characterized using transmission electron microscopy (TEM), protein quantification, western blotting, and nanoparticle tracking analysis (NTA). Absolute quantitative (AQ)-PCR was employed to analyse EV-miR-451a expression. Isolated EVs had the appropriate morphology and size. Patient sera contained significantly more EVs than did healthy controls. In tumour-bearing animals, a correlation between serum EV number and tumour burden was observed. There was no significant relationship between EV protein yield and EV quantity determined by NTA, highlighting the requirement for direct quantification. Using AQ-PCR to relate miRNA copy number to EV yield, a significant increase in miRNA-451a copies/EV was detected in BC patient sera, suggesting potential as a novel biomarker of breast cancer.

2021 ◽  
Vol 8 ◽  
Author(s):  
Chih-Chien Sung ◽  
Min-Hsiu Chen ◽  
Yi-Chang Lin ◽  
Yu-Chun Lin ◽  
Yi-Jia Lin ◽  
...  

Background: The utility of urinary extracellular vesicles (uEVs) to faithfully represent the changes of renal tubular protein expression remains unclear. We aimed to evaluate renal tubular sodium (Na+) or potassium (K+) associated transporters expression from uEVs and kidney tissues in patients with Gitelman syndrome (GS) caused by inactivating mutations in SLC12A3.Methods: uEVs were isolated by ultracentrifugation from 10 genetically-confirmed GS patients. Membrane transporters including Na+-hydrogen exchanger 3 (NHE3), Na+/K+/2Cl− cotransporter (NKCC2), NaCl cotransporter (NCC), phosphorylated NCC (p-NCC), epithelial Na+ channel β (ENaCβ), pendrin, renal outer medullary K1 channel (ROMK), and large-conductance, voltage-activated and Ca2+-sensitive K+ channel (Maxi-K) were examined by immunoblotting of uEVs and immunofluorescence of biopsied kidney tissues. Healthy and disease (bulimic patients) controls were also enrolled.Results: Characterization of uEVs was confirmed by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. Compared with healthy controls, uEVs from GS patients showed NCC and p-NCC abundance were markedly attenuated but NHE3, ENaCβ, and pendrin abundance significantly increased. ROMK and Maxi-K abundance were also significantly accentuated. Immunofluorescence of the representative kidney tissues from GS patients also demonstrated the similar findings to uEVs. uEVs from bulimic patients showed an increased abundance of NCC and p-NCC as well as NHE3, NKCC2, ENaCβ, pendrin, ROMK and Maxi-K, akin to that in immunofluorescence of their kidney tissues.Conclusion: uEVs could be a non-invasive tool to diagnose and evaluate renal tubular transporter adaptation in patients with GS and may be applied to other renal tubular diseases.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 11013-11013 ◽  
Author(s):  
Julia Beck ◽  
Ekkehard Schütz ◽  
Howard B. Urnovitz ◽  
Adel Tabchy ◽  
William M. Mitchell ◽  
...  

11013 Background: Massive parallel sequencing provides high numbers of cell-free nucleic acid serum DNA sequences (cfDNA) that can detect trace amounts of tumor derived chromosomal imbalances and copy number variations (CNVs) in patients with cancer. The aim of this study was to determine if there is a difference between the cfDNA CNVs from patients with breast cancer (BrCa) compared to healthy controls. Methods: DNA extracted from serum samples of 225 BrCa (Stage 1 to 4) and 205 gender and age-matched healthy controls (HC) was amplified using random primers, tagged with a unique molecular identifier per sample, sequenced on an Illumina HiSeq system and aligned to the human genome (Build 37). Hits were counted in sliding 1Mbp interval regions and normalized. Using a Random-Resampling procedure, a model was established to distinguish BrCa from HC using the copy number variations (CNV) and cross validated. Results: From 1,100 rounds of random resampling (50/50), a set of 31 regions was selected, based on the frequency of occurrence in the models. Using 20 random sets of a 10-fold cross validation, the selected regions were found to be highly significant discriminators between BrCa and HC (p<10-5). When using a final linear model with 16 regions the AUC of a diagnostic ROC curve was found to be 0.895 for all samples, for Stage I and II the AUC was 0.86 compared to 0.93 for the higher stages. The final model included three regions from chromosome 8 and 1 and two regions from chromosome 15, the remaining regions were found as one per chromosome. Conclusions: Using comparative massive parallel sequencing of cfDNA from cancer patients vs. controls, we were able to show that a 16-region model based on CNV, is useful to distinguish patients with breast cancer from matched controls. Genomic instabilities that are shed into the circulation from breast cancer may play a role in screening, monitoring or as companion diagnostic tests in breast cancer.


2021 ◽  
pp. 1-9
Author(s):  
Dandan Gao ◽  
Junkui Shang ◽  
Ruihua Sun ◽  
Yingying Shi ◽  
Haisong Jiang ◽  
...  

Background: Exosomes are nano-sized extracellular vesicles which are secreted by cells and usually found in body fluids. Previous research has shown that exosomal secretion and autophagy-lysosomal pathway synergistically participates in intracellular abnormal protein elimination. The main pathological manifestations of Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is abnormal accumulation of mutant NOTCH3, and CADASIL vascular smooth muscle cells have been found with autophagy-lysosomal dysfunction. However, whether plasma exosomes change in CADASIL patients is still unclear. Objective: We are aimed to investigate the differences of plasma exosomes between CADASIL patients and healthy controls. Methods: The subjects included 30 CADASIL patients and 30 healthy controls without NOTCH3 mutation. The severity of white matter lesions (WMLs) of CADASIL patients was quantified by Fazekas score. Transmission electron microscopy and nanoparticle tracking analysis were performed to characterize plasma exosomes. In addition, NOTCH3, Neurofilament light and Aβ42 levels in plasma exosomes were quantified by enzyme-linked immunosorbent assays. Results: We found that exosomes from CADASIL patients were lower in quantity. In addition, CADASIL plasma exosomes had significantly lower levels of NOTCH3 and significantly increased levels of NFL than those of matched healthy subjects. Interestingly, plasma exosome NOTCH3 levels of CADASIL patients significantly correlated with severity of WMLs. Conclusion: The exosome NOTCH3 may be related to the pathological changes of CADASIL, which provides a basis for the pathogenesis research of CADASIL. In addition, plasma exosome NOTCH3 and NFL levels may act as biomarkers to monitor and predict disease progression and measure therapeutic effectiveness in the future clinical trials.


2020 ◽  
Vol 20 (9) ◽  
pp. 681-688
Author(s):  
Nikolai V. Litviakov ◽  
Marina K. Ibragimova ◽  
Matvey M. Tsyganov ◽  
Artem V. Doroshenko ◽  
Eugeniy Y. Garbukov ◽  
...  

Background: In this study, we examined the CNA-genetic landscape (CNA – copy number aberration) of breast cancer prior to and following neoadjuvant chemotherapy (NAC) and correlated changes in the tumor landscape with chemotherapy efficiency as well as metastasis-free survival. Objective: Breast cancer patients (n = 30) with luminal B molecular subtypes were treated with anthracycline- based therapy. Methods: To study CNAs in breast tumors, microarray analysis was performed. Results: Three effects of NAC on tumor CNA landscape were identified: 1 – the number of CNA-bearing tumor clones decreased following NAC; 2 – there were no alterations in the number of CNA-containing clones after NAC; 3 – the treatment with NAC increased the number of CNA-bearing clones (new clones appeared). All NAC-treated patients who had new tumor clones with amplification (20%) had a 100% likelihood of metastasis formation. In these cases, NAC contributed to the emergence of potential metastatic clones. Our study identified the following loci – 5p, 6p, 7q, 8q, 9p, 10p, 10q22.1, 13q, 16p, 18Chr and 19p – that were amplified during the treatment with NAC and may be the markers of potential metastatic clones. In other patients who showed total or partial elimination of CNA-bearing cell clones, no new amplification clones were observed after NAC, and no evidence of metastases was found with follow-up for 5 years (р = 0.00000). Conclusion: Our data suggest that the main therapeutic result from NAC is the elimination of potential metastatic clones present in the tumor before treatment. The results showed the necessity of an intelligent approach to NAC to avoid metastasis stimulation.


MicroRNA ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 58-63
Author(s):  
Batool Savari ◽  
Sohrab Boozarpour ◽  
Maryam Tahmasebi-Birgani ◽  
Hossein Sabouri ◽  
Seyed Mohammad Hosseini

Background: Breast cancer is the most common cancer diagnosed in women worldwide. So it seems that there's a good chance of recovery if it's detected in its early stages even before the appearances of symptoms. Recent studies have shown that miRNAs play an important role during cancer progression. These transcripts can be tracked in liquid samples to reveal if cancer exists, for earlier treatment. MicroRNA-21 (miR-21) has been shown to be a key regulator of carcinogenesis, and breast tumor is no exception. Objective: The present study was aimed to track the miR-21 expression level in serum of the breast cancer patients in comparison with that of normal counterparts. Methods: Comparative real-time polymerase chain reaction was applied to determine the levels of expression of miR-21 in the serum samples of 57 participants from which, 42 were the patients with breast cancer including pre-surgery patients (n = 30) and post-surgery patients (n = 12), and the others were the healthy controls (n = 15). Results: MiR-21 was significantly over expressed in the serum of breast cancer patients as compared with healthy controls (P = 0.002). A significant decrease was also observed following tumor resection (P < 0.0001). Moreover, it was found that miR-21 overexpression level was significantly associated with tumor grade (P = 0.004). Conclusion: These findings suggest that miR-21 has the potential to be used as a novel breast cancer biomarker for early detection and prognosis, although further experiments are needed.


2017 ◽  
Vol 24 (10) ◽  
pp. R349-R366 ◽  
Author(s):  
Catherine Zabkiewicz ◽  
Jeyna Resaul ◽  
Rachel Hargest ◽  
Wen Guo Jiang ◽  
Lin Ye

Bone morphogenetic proteins (BMPs) belong to the TGF-β super family, and are essential for the regulation of foetal development, tissue differentiation and homeostasis and a multitude of cellular functions. Naturally, this has led to the exploration of aberrance in this highly regulated system as a key factor in tumourigenesis. Originally identified for their role in osteogenesis and bone turnover, attention has been turned to the potential role of BMPs in tumour metastases to, and progression within, the bone niche. This is particularly pertinent to breast cancer, which commonly metastasises to bone, and in which studies have revealed aberrations of both BMP expression and signalling, which correlate clinically with breast cancer progression. Ultimately a BMP profile could provide new prognostic disease markers. As the evidence suggests a role for BMPs in regulating breast tumour cellular function, in particular interactions with tumour stroma and the bone metastatic microenvironment, there may be novel therapeutic potential in targeting BMP signalling in breast cancer. This review provides an update on the current knowledge of BMP abnormalities and their implication in the development and progression of breast cancer, particularly in the disease-specific bone metastasis.


Separations ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Kollur Shiva Prasad ◽  
Shashanka K Prasad ◽  
Ravindra Veerapur ◽  
Ghada Lamraoui ◽  
Ashwini Prasad ◽  
...  

Herein we report the synthesis of zinc oxide nanoparticles (ZnONPs) using Withania somnifera root extract (WSE) as an effective chelating agent. The microscopic techniques viz., X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were employed to analyze the as-obtained ZnONPs. The crystalline planes observed from the XRD pattern agrees with the hexagonal wurtzite structure of the as-prepared ZnONPs. The aggregations and agglomerations observed in the SEM images indicated that the size of the as-prepared ZnONPs was between 30 and 43 nm. The interplanar distance between the lattice fringes observed in the HRTEM image was found to be 0.253 nm, which is in good agreement with the (100) plane obtained in the XRD pattern. Furthermore, the anti-breast cancer cytotoxic evaluation was carried out using the MCF-7 cell line, and the results showed significant cytotoxic effects in a dose-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document