scholarly journals Implications of Selective Autophagy Dysfunction for ALS Pathology

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 381 ◽  
Author(s):  
Emiliano Vicencio ◽  
Sebastián Beltrán ◽  
Luis Labrador ◽  
Patricio Manque ◽  
Melissa Nassif ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder that progressively affects motor neurons in the brain and spinal cord. Due to the biological complexity of the disease, its etiology remains unknown. Several cellular mechanisms involved in the neurodegenerative process in ALS have been found, including the loss of RNA and protein homeostasis, as well as mitochondrial dysfunction. Insoluble protein aggregates, damaged mitochondria, and stress granules, which contain RNA and protein components, are recognized and degraded by the autophagy machinery in a process known as selective autophagy. Autophagy is a highly dynamic process whose dysregulation has now been associated with neurodegenerative diseases, including ALS, by numerous studies. In ALS, the autophagy process has been found deregulated in both familial and sporadic cases of the disease. Likewise, mutations in genes coding for proteins involved in the autophagy machinery have been reported in ALS patients, including selective autophagy receptors. In this review, we focus on the role of selective autophagy in ALS pathology.

2008 ◽  
Vol 36 (6) ◽  
pp. 1322-1328 ◽  
Author(s):  
Willianne I.M. Vonk ◽  
Leo W.J. Klomp

ALS (amyotrophic lateral sclerosis) is a devastating progressive neurodegenerative disorder resulting in selective degeneration of motor neurons in brain and spinal cord and muscle atrophy. In approx. 2% of all cases, the disease is caused by a mutation in the Cu,Zn-superoxide dismutase (SOD1) gene. The transition metals zinc and copper regulate SOD1 protein stability and activity, and disbalance of the homoeostasis of these metals has therefore been implicated in the pathogenesis of ALS. Recent data strengthen the hypothesis that these transition metals are excellent potential targets to develop an effective therapy for ALS.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Maria Teresa Gonzalez-Garza ◽  
Hector Ramon Martinez ◽  
Delia E. Cruz-Vega ◽  
Martin Hernandez-Torre ◽  
Jorge E. Moreno-Cuevas

Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disorder that selectively attacks motor neurons in the brain and spinal cord. Despite important advances in the knowledge of the etiology and progression of the disease, there are still no solid grounds in which a clinician could make an early objective and reliable diagnosis from which patients could benefit. Diagnosis is difficult and basically made by clinical rating scales (ALSRs and El Escorial). The possible finding of biomarkers to aid in the early diagnosis and rate of disease progression could serve for future innovative therapeutic approaches. Recently, it has been suggested that ALS has an important immune component that could represent either the cause or the consequence of the disease. In this report, we analyzed 19 different cytokines and growth factors in the cerebrospinal fluid of 77 ALS patients and 13 controls by decision tree and PanelomiX program. Results showed an increase of Adipsin, MIP-1b, and IL-6, associated with a decrease of IL-8 thresholds, related with ALS patients. This biomarker panel analysis could represent an important aid for diagnosis of ALS alongside the clinical and neurophysiological criteria.


2019 ◽  
Vol 26 (20) ◽  
pp. 3719-3753 ◽  
Author(s):  
Natasa Kustrimovic ◽  
Franca Marino ◽  
Marco Cosentino

:Parkinson’s disease (PD) is the second most common neurodegenerative disorder among elderly population, characterized by the progressive degeneration of dopaminergic neurons in the midbrain. To date, exact cause remains unknown and the mechanism of neurons death uncertain. It is typically considered as a disease of central nervous system (CNS). Nevertheless, numerous evidence has been accumulated in several past years testifying undoubtedly about the principal role of neuroinflammation in progression of PD. Neuroinflammation is mainly associated with presence of activated microglia in brain and elevated levels of cytokine levels in CNS. Nevertheless, active participation of immune system as well has been noted, such as, elevated levels of cytokine levels in blood, the presence of auto antibodies, and the infiltration of T cell in CNS. Moreover, infiltration and reactivation of those T cells could exacerbate neuroinflammation to greater neurotoxic levels. Hence, peripheral inflammation is able to prime microglia into pro-inflammatory phenotype, which can trigger stronger response in CNS further perpetuating the on-going neurodegenerative process.:In the present review, the interplay between neuroinflammation and the peripheral immune response in the pathobiology of PD will be discussed. First of all, an overview of regulation of microglial activation and neuroinflammation is summarized and discussed. Afterwards, we try to collectively analyze changes that occurs in peripheral immune system of PD patients, suggesting that these peripheral immune challenges can exacerbate the process of neuroinflammation and hence the symptoms of the disease. In the end, we summarize some of proposed immunotherapies for treatment of PD.


2019 ◽  
Vol 20 (20) ◽  
pp. 5151 ◽  
Author(s):  
Norante ◽  
Peggion ◽  
Rossi ◽  
Martorana ◽  
De Mario ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective death of motor neurons (MNs), probably by a combination of cell- and non-cell-autonomous processes. The past decades have brought many important insights into the role of astrocytes in nervous system function and disease, including the implication in ALS pathogenesis possibly through the impairment of Ca2+-dependent astrocyte-MN cross-talk. In this respect, it has been recently proposed that altered astrocytic store-operated Ca2+ entry (SOCE) may underlie aberrant gliotransmitter release and astrocyte-mediated neurotoxicity in ALS. These observations prompted us to a thorough investigation of SOCE in primary astrocytes from the spinal cord of the SOD1(G93A) ALS mouse model in comparison with the SOD1(WT)-expressing controls. To this purpose, we employed, for the first time in the field, genetically-encoded Ca2+ indicators, allowing the direct assessment of Ca2+ fluctuations in different cell domains. We found increased SOCE, associated with decreased expression of the sarco-endoplasmic reticulum Ca2+-ATPase and lower ER resting Ca2+ concentration in SOD1(G93A) astrocytes compared to control cells. Such findings add novel insights into the involvement of astrocytes in ALS MN damage.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Julianne Aebischer ◽  
Nathalie Bernard-Marissal ◽  
Brigitte Pettmann ◽  
Cédric Raoul

While studies on death receptors have long been restricted to immune cells, the last decade has provided a strong body of evidence for their implication in neuronal death and hence neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). ALS is a fatal paralytic disorder that primarily affects motoneurons in the brain and spinal cord. A neuroinflammatory process, associated with astrocyte and microglial activation as well as infiltration of immune cells, accompanies motoneuron degeneration and supports the contribution of non-cell-autonomous mechanisms in the disease. Hallmarks of Fas, TNFR, LT-βR, and p75NTR signaling have been observed in both animal models and ALS patients. This review summarizes to date knowledge of the role of death receptors in ALS and the link existing between the selective loss of motoneurons and neuroinflammation. It further suggests how this recent evidence could be included in an ultimate multiapproach to treat patients.


2016 ◽  
Vol 113 (11) ◽  
pp. 3060-3065 ◽  
Author(s):  
Eleonora Palma ◽  
Jorge Mauricio Reyes-Ruiz ◽  
Diego Lopergolo ◽  
Cristina Roseti ◽  
Cristina Bertollini ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons that leads to progressive paralysis of skeletal muscle. Studies of ALS have revealed defects in expression of acetylcholine receptors (AChRs) in skeletal muscle that occur even in the absence of motor neuron anomalies. The endocannabinoid palmitoylethanolamide (PEA) modified the clinical conditions in one ALS patient, improving muscle force and respiratory efficacy. By microtransplanting muscle membranes from selected ALS patients into Xenopus oocytes, we show that PEA reduces the desensitization of acetylcholine-evoked currents after repetitive neurotransmitter application (i.e., rundown). The same effect was observed using muscle samples from denervated (non-ALS) control patients. The expression of human recombinant α1β1γδ (γ-AChRs) and α1β1εδ AChRs (ε-AChRs) in Xenopus oocytes revealed that PEA selectively affected the rundown of ACh currents in ε-AChRs. A clear up-regulation of the α1 subunit in muscle from ALS patients compared with that from non-ALS patients was found by quantitative PCR, but no differential expression was found for other subunits. Clinically, ALS patients treated with PEA showed a lower decrease in their forced vital capacity (FVC) over time as compared with untreated ALS patients, suggesting that PEA can enhance pulmonary function in ALS. In the present work, data were collected from a cohort of 76 ALS patients and 17 denervated patients. Our results strengthen the evidence for the role of skeletal muscle in ALS pathogenesis and pave the way for the development of new drugs to hamper the clinical effects of the disease.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
C. Simoncini ◽  
D. Orsucci ◽  
E. Caldarazzo Ienco ◽  
G. Siciliano ◽  
U. Bonuccelli ◽  
...  

Alzheimer’s disease (AD) is the most common form of dementia in the elderly. This neurodegenerative disorder is clinically characterized by impairment of cognitive functions and changes in behaviour and personality. The pathogenesis of AD is still unclear. Recent evidence supports some role of mitochondria dysfunction and oxidative stress in the development of the neurodegenerative process. In this review, we discuss the role of mitochondrial dysfunction in AD, focusing on the mechanisms that lead to mitochondrial impairment, oxidative stress, and neurodegeneration, a “vicious circle” that ends in dementia.


Author(s):  
Cezar Thomas Suratos ◽  
Naoko Takamatsu ◽  
Hiroki Yamazaki ◽  
Yusuke Osaki ◽  
Tatsuya Fukumoto ◽  
...  

Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting the upper and lower motor neurons causing progressive weakness. It eventually involves the diaphragm which leads to respiratory paralysis and subsequently death. Phrenic nerve (PN) conduction studies and diaphragm ultrasound has been studied and correlated with pulmonary function tests in ALS patients. However, PN ultrasonography has not been employed in ALS. This study aims to sonographically evaluate the morphologic appearance of the PN of ALS patients. Thirty-eight ALS patients and 28 normal controls referred to the neurophysiology laboratory of two institutions were retrospectively included in the study. Baseline demographic and clinical variables such as disease duration, ALS Functional Rating Scale-Revised score, and ALS region of onset were collected. Ultrasound was used to evaluate the PN cross-sectional area (CSA) of ALS and control subjects. The mean PN CSA of ALS patients were 1.08 ± 0.39 mm on the right and 1.02 ± 0.34 mm on the left. The PN CSA of ALS patients were significantly decreased compared to controls (p value < 0.00001). The PN CSA of ALS patients was not correlated to any of the demographic and clinical parameters tested. This study demonstrates that ALS patients have a smaller PN size compared to controls using ultrasonography.


2004 ◽  
Vol 279 (44) ◽  
pp. 45951-45956 ◽  
Author(s):  
François Gros-Louis ◽  
Roxanne Larivière ◽  
Geneviève Gowing ◽  
Sandra Laurent ◽  
William Camu ◽  
...  

Peripherin is a neuronal intermediate filament associated with inclusion bodies in motor neurons of patients with amyotrophic lateral sclerosis (ALS). A possible peripherin involvement in ALS pathogenesis has been suggested based on studies with transgenic mouse overexpressors and with a toxic splicing variant of the mouse peripherin gene. However, the existence of peripherin gene mutations in human ALS has not yet been documented. Therefore, we screened for sequence variants of the peripherin gene (PRPH) in a cohort of ALS patients including familial and sporadic cases. We identified 18 polymorphic variants ofPRPHdetected in both ALS and age-matched control populations. Two additionalPRPHvariants were discovered in ALS cases but not in 380 control individuals. One variant consisted of a nucleotide insertion in intron 8 (PRPHIVS8–36insA), whereas the other one consisted of a 1-bp deletion within exon 1 (PRPH228delC), predicting a truncated peripherin species of 85 amino acids. Remarkably, expression of this frameshift peripherin mutant in SW13 cells resulted in disruption of neurofilament network assembly. These results suggest thatPRPHmutations may be responsible for a small percentage of ALS, cases and they provide further support of the view that neurofilament disorganization may contribute to pathogenesis.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Chalonda R. Handy ◽  
Christina Krudy ◽  
Nicholas Boulis ◽  
Thais Federici

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder marked by progressive loss of motor neurons, muscle wasting, and respiratory dysfunction. With disease progression, secondary symptoms arise creating new problematic conditions for ALS patients. Amongst these is pain. Although not a primary consequence of disease, pain occurs in a substantial number of individuals. Yet, studies investigating its pathomechanistic properties in the ALS patient are lacking. Therefore, more exploratory efforts into its scope, severity, impact, and treatment should be initiated. Several studies investigating the use of Clostridial neurotoxins for the reduction of pain in ALS patients suggest the potential for a neural specific approach involving focal drug delivery. Gene therapy represents a way to accomplish this. Therefore, the use of viral vectors to express transgenes that modulate the nociceptive cascade could prove to be an effective way to achieve meaningful benefit in conditions of pain in ALS.


Sign in / Sign up

Export Citation Format

Share Document