scholarly journals Formation of Aberrant Myotubes by Myoblasts Lacking Myosin VI Is Associated with Alterations in the Cytoskeleton Organization, Myoblast Adhesion and Fusion

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1673
Author(s):  
Lilya Lehka ◽  
Małgorzata Topolewska ◽  
Dominika Wojton ◽  
Olena Karatsai ◽  
Paloma Alvarez-Suarez ◽  
...  

We have previously postulated that unconventional myosin VI (MVI) could be involved in myoblast differentiation. Here, we addressed the mechanism(s) of its involvement using primary myoblast culture derived from the hindlimb muscles of Snell’s waltzer mice, the natural MVI knockouts (MVI-KO). We observed that MVI-KO myotubes were formed faster than control heterozygous myoblasts (MVI-WT), with a three-fold increase in the number of myosac-like myotubes with centrally positioned nuclei. There were also changes in the levels of the myogenic transcription factors Pax7, MyoD and myogenin. This was accompanied by changes in the actin cytoskeleton and adhesive structure organization. We observed significant decreases in the levels of proteins involved in focal contact formation, such as talin and focal adhesion kinase (FAK). Interestingly, the levels of proteins involved in intercellular communication, M-cadherin and drebrin, were also affected. Furthermore, time-dependent alterations in the levels of the key proteins for myoblast membrane fusion, myomaker and myomerger, without effect on their cellular localization, were observed. Our data indicate that in the absence of MVI, the mechanisms controlling cytoskeleton organization, as well as myoblast adhesion and fusion, are dysregulated, leading to the formation of aberrant myotubes.

2021 ◽  
Author(s):  
Archna Sharma ◽  
Max Brenner ◽  
Asha Jacob ◽  
Philippe Marambaud ◽  
Ping Wang

Abstract Extracellular cold-inducible RNA-binding protein (eCIRP) stimulates microglial inflammation causing neuronal damage during ischemic stroke and is a critical mediator of alcohol-induced cognitive impairment. However, the precise role of eCIRP in mediating neuroinflammation remains unknown. In this study, we report that eCIRP activates neurotoxic cyclin-dependent kinase-5 (Cdk5)/p25 through the induction of IL-6Rα/STAT3 pathway in neurons. Amyloid b (Aβ)-mediated neuronal stress, which is associated with Alzheimer’s disease, increased levels of eCIRP released from BV2 microglial cells. The released eCIRP levels from BV2 cells increased 3.2-fold upon stimulation with conditioned medium from Neuro-2a (N2a) cells containing Aβ compared to control N2a supernatant in a time-dependent manner. Stimulation of N2a cells and primary neurons with eCIRP upregulated the neuronal Cdk5 activator p25 expression in a dose- and time-dependent manner. eCIRP directly induced neuronal STAT3 phosphorylation and p25 increase via its novel receptor IL-6Rα. Next, we showed using surface plasmon resonance that eCIRP-derived peptide C23 inhibited the binding of eCIRP to IL-6Rα at 25 mM, with a 40-fold increase in equilibrium dissociation constant (Kd) value (from 8.08 x 10-8 M to 3.43 x 10-6 M), and completely abrogated the binding at 50 mM. Finally, C23 reversed the eCIRP-induced increase in neuronal STAT3 phosphorylation and p25 levels. In conclusion, the current study demonstrates that upregulation of neuronal IL-6Rα/STAT3/Cdk5 pathway is a key mechanism of eCIRP’s role in neuroinflammation and that C23 as a potent inhibitor of this pathway, has translational potential in neurodegenerative pathologies controlled by eCIRP.


1994 ◽  
Vol 107 (3) ◽  
pp. 487-496 ◽  
Author(s):  
I. Guillet-Deniau ◽  
A. Leturque ◽  
J. Girard

Skeletal muscle regeneration is mediated by the proliferation of myoblasts from stem cells located beneath the basal lamina of myofibres, the muscle satellite cells. They are functionally indistinguishable from embryonic myoblasts. The myogenic process includes the fusion of myoblasts into multinucleated myotubes, the biosynthesis of proteins specific for skeletal muscle and proteins that regulates glucose metabolism, the glucose transporters. We find that three isoforms of glucose transporter are expressed during foetal myoblast differentiation: GLUT1, GLUT3 and GLUT4; their relative expression being dependent upon the stage of differentiation of the cells. GLUT1 mRNA and protein were abundant only in myoblasts from 19-day-old rat foetuses or from adult muscles. GLUT3 mRNA and protein, detectable in both cell types, increased markedly during cell fusion, but decreased in contracting myotubes. GLUT4 mRNA and protein were not expressed in myoblasts. They appeared only in spontaneously contracting myotubes cultured on an extracellular matrix. Insulin or IGF-I had no effect on the expression of the three glucose transporter isoforms, even in the absence of glucose. The rate of glucose transport, assessed using 2-[3H]deoxyglucose, was 2-fold higher in myotubes than in myoblasts. Glucose deprivation increased the basal rate of glucose transport by 2-fold in myoblasts, and 4-fold in myotubes. The cellular localization of the glucose transporters was directly examined by immunofluorescence staining. GLUT1 was located on the plasma membrane of myoblasts and myotubes. GLUT3 was located intracellularly in myoblasts and appeared also on the plasma membrane in myotubes. Insulin or IGF-I were unable to target GLUT3 to the plasma membrane. GLUT4, the insulin-regulatable glucose transporter isoform, appeared only in contracting myotubes in small intracellular vesicles. It was translocated to the plasma membrane after a short exposure to insulin, as it is in skeletal muscle in vivo. These results show that there is a switch in glucose transporter isoform expression during myogenic differentiation, dependent upon the energy required by the different stages of the process. GLUT3 seemed to play a role during cell fusion, and could be a marker for the muscle's ability to regenerate.


1992 ◽  
Vol 262 (1) ◽  
pp. L21-L31 ◽  
Author(s):  
P. G. Phillips ◽  
L. Birnby ◽  
L. A. Di Bernardo ◽  
T. J. Ryan ◽  
M. F. Tsan

Confluent calf pulmonary artery endothelial monolayers exposed to 95% oxygen for 1, 2, or 3 days exhibit a time-dependent increase in adherence to substratum, which closely parallels changes in actin cytoarchitecture and the distribution of focal contact proteins vinculin and talin. Oxygen exposure also resulted in elevated plasminogen activator (PA) activity in conditioned media (CM) and in cytoskeletal protein- and focal contact protein-enriched fractions, with highest levels achieved in the latter two fractions at 48 h after oxygen exposure. PAs have been shown to participate in dismantling of extracellular matrix in a number of physiological and pathological situations. Immunocytochemical studies demonstrated extensive restructuring of matrix proteins collagen IV, laminin, and fibronectin, which correlated temporally with elevated PA levels. Further, when protease-containing cell fractions were used to study degradation of isolated matrices, those obtained from hyperoxia-exposed cells were substantially more active than those from normoxia-exposed cells. Our data suggest that hyperoxia-induced production of PA (and perhaps other proteases) may be partly responsible for degradation of the extracellular matrix of endothelial cells.


3 Biotech ◽  
2020 ◽  
Vol 10 (9) ◽  
Author(s):  
Huayun Huang ◽  
Longzhou Liu ◽  
Chunmiao Li ◽  
Zhong Liang ◽  
Zhenyang Huang ◽  
...  

2008 ◽  
Vol 36 (3) ◽  
pp. 369-380 ◽  
Author(s):  
S. Na ◽  
A. Trache ◽  
J. Trzeciakowski ◽  
Z. Sun ◽  
G. A. Meininger ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 902-902 ◽  
Author(s):  
Dhananjay K. Kaul ◽  
Sandra M. Suzuka ◽  
Mary Fabry

Abstract Abstract 902 Multiple adhesion molecules, expressed on sickle red blood cells (SS RBCs) and activated endothelium, have been implicated in SS RBC adhesion to vascular endothelium. Moreover, intrinsic differences among heterogeneous SS RBC subpopulations, involving differences in red cell adhesion molecules and cell deformability, may contribute to their adhesive and obstructive properties and lead to postcapillary obstruction. However, the role of SS RBCs in endothelium activation and adhesion has not been evaluated despite the insightful studies of Hebbel and coworkers (JCI, 1982) demonstrating that SS RBCs generate excessive amounts of reactive oxygen species due to the presence of unstable hemoglobin S (HbS) and autoxidation of iron in heme. RBCs from transgenic-knockout sickle (BERK) mice similarly show a pronounced increase in heme degradation (Nagababu et. al. Blood Cells Mol Dis, 2008). We hypothesize that hypoxic conditions in venules (oxygen tension,∼30 mm Hg) will accelerate autoxidation of RBC membrane-bound HbS and release H2O2 that will be transferred to adjoining endothelium resulting in its activation (i.e., up-regulation of endothelial adhesion molecules) and SS RBC adhesion. To test the hypothesis that HbS-containing red cells from BERK mice will result in activation of quiescent endothelium in normal mice, we infused FITC (fluorescein isothiocynate)-labeled BERK red cells into congenic C57BL mice. BERK mice, expressing exclusively human βS- and α-globins, have been extensively backcrossed onto C57BL background. Intravital observations were made in the cremaster muscle microcirculatory bed. A single bolus of 150 μl of FITC-labeled BERK RBCs (Hct 30%) was infused into the recipient C57BL mouse via the jugular vein over a period of 5 min to avoid any shear related platelet aggregation. Infusion of FITC-labeled control (C57BL) mouse RBCs into C57BL recipient mice resulted in rare or no RBC adhesion, suggesting that there was no activating effect on endothelium. In contrast, infusion of BERK mouse RBCs into C57BL mice resulted in time-dependent increase in adhesion to venular endothelium. Adhesion became discernable after 3 minutes and showed a 3-5 fold increase after 5-min compared with the number of adherent RBCs at 3 min (P<0.01). Next, we investigated if the infusion of BERK mouse RBCs would induce increased endothelial oxidants. To this end, the cremaster preparation was suffused for 15 min with 123 dihydrorhodamine (DHR), a H2O2-sensitive probe (10 μl/L), followed by a bolus infusion of BERK mouse RBCs, and time-dependent changes in DHR fluorescence intensity were monitored in venules, the sites of adhesion. Infusion of BERK mouse RBCs, but not C57BL RBCs, resulted in time-dependent increase in the fluorescence intensity (ΔI) in venular endothelium, with almost 5-fold increase in DHR intensity after 5 min of BERK RBC infusion (P<0.001) compared with ΔI at 1 min. When infusion of catalase (900 U/mouse) into recipient C57BL mice was followed 30 min later by a bolus of FITC-labeled BERK mouse RBCs, BERK RBC adhesion and pronounced DHR fluorescence in endothelium were observed, demonstrating that intravascular infusion of catalase had little effect on oxidant generation by BERK mouse RBCs. In contrast, infusion of BERK RBCs pre-treated with catalase (100 U in 0.2 ml RBC suspension, 9-fold less catalase per mouse) to quench RBC generated H2O2 inhibited endothelial DHR fluorescence and BERK RBC adhesion. These results strongly suggest an obligatory role of heme-mediated peroxide generation by SS RBC in endothelial activation and SS RBC adhesion, and support the notion that heme-mediated oxidant generation may play a vital role in endothelial dysfunction in sickle cell disease. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Lucas Fauquier ◽  
Karim Azzag ◽  
Marco Antonio Mendoza Parra ◽  
Aurélie Quillien ◽  
Manon Boulet ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 150 (4) ◽  
pp. 1935-1940 ◽  
Author(s):  
Jonathan D. Schertzer ◽  
Costin N. Antonescu ◽  
Philip J. Bilan ◽  
Swati Jain ◽  
Xudong Huang ◽  
...  

Skeletal muscle is the major site for dietary glucose disposal, taking up glucose via glucose transporter 4 (GLUT4). Although subcellular fractionation studies demonstrate that insulin increases GLUT4 density in sarcolemma and transverse tubules, fractionation cannot discern GLUT4 vesicle-membrane association from insertion and exofacial exposure. Clonal muscle cultures expressing exofacially tagged GLUT4 have allowed quantification of GLUT4 exposure at the cell surface, its exocytosis, endocytosis, and partner proteins. We hypothesized that transgenic expression of GLUT4myc in skeletal muscles would provide a useful model to investigate GLUT4 biology in vivo. A homozygous mouse colony was generated expressing GLUT4myc driven by the muscle creatine kinase (MCK) promoter. GLUT4 protein levels were about 3-fold higher in hindlimb muscles of MCK-GLUT4myc transgenic mice compared with littermates (P &lt; 0.05). Insulin (12 nm, 30 min) induced a 2.1-fold increase in surface GLUT4myc detected by immunofluorescence of the exofacial myc epitope in nonpermeabilized muscle fiber bundles (P &lt; 0.05). Glucose uptake and surface GLUT4myc levels were 3.5- and 3-fold higher, respectively, in giant membrane vesicles blebbed from hindlimb muscles of insulin-stimulated transgenic mice compared with unstimulated counterparts (P &lt; 0.05). Muscle contraction also elevated both parameters, an effect partially additive to insulin’s. GLUT4myc immunoprecipitation with anti-myc antibodies avoids interfering with associated intracellular binding proteins. Tether, containing a UBX domain, for GLUT4 coimmunoprecipitated with GLUT4myc and insulin stimulation significantly decreased such association (P &lt; 0.05). MCK-GLUT4myc transgenic mice are thus useful to quantify exofacial GLUT4 exposure at the sarcolemma and GLUT4 binding partners in skeletal muscle, essential elements in the investigation of muscle GLUT4 regulation in physiological and pathological states in vivo.


1993 ◽  
Vol 4 (6) ◽  
pp. 593-604 ◽  
Author(s):  
R Briesewitz ◽  
A Kern ◽  
E E Marcantonio

Many integrin receptors localize to focal contact sites upon binding their ligand. However, unoccupied integrin receptors do not localize to focal contact sites. Because the integrin beta 1 cytoplasmic domain appears to have a focal contact localization signal, there must be a mechanism by which this domain is kept inactive in the unoccupied state and becomes exposed or activated in the occupied receptor. We considered that this mechanism involves the alpha subunit cytoplasmic domain. To test this hypothesis, we have established two NIH 3T3 cell lines that express either the human alpha 1 wild-type subunit (HA1 cells) or the cytoplasmic domain deleted alpha 1 subunit (CYT cells). Both cell lines express similar levels of the human alpha 1 subunit, and there is no significant effect of the deletion on the dimerization and surface expression of the receptor. Furthermore, the deletion had no effect on the binding or adhesion via alpha 1 beta 1 to its ligand collagen IV. However, when these two cell lines are plated on fibronectin (FN), which is a ligand for alpha 5 beta 1 but not for alpha 1 beta 1, there is a striking difference in the cellular localization of alpha 1 beta 1. The HA1 cells show only alpha 5 in focal contacts, without alpha 1, demonstrating that all of the integrin localization is ligand dependent. In contrast, when the CYT cells are plated on FN, the mutant alpha 1 appears in focal contacts along with the alpha 5/beta 1. Thus, there is both ligand-dependent (alpha 5/beta 1) and ligand-independent (alpha 1/beta 1) focal contact localization in these cells. The truncated alpha 1 also localized to focal contacts in a ligand-independent manner on vitronectin. We conclude that the mutant alpha 1 no longer requires ligand occupancy for focal contact localization. These data strongly suggest that the alpha cytoplasmic domain plays a role in the normal ligand-dependent integrin focal contact localization.


2009 ◽  
Vol 20 (9) ◽  
pp. 2508-2519 ◽  
Author(s):  
Kristin E. Michael ◽  
David W. Dumbauld ◽  
Kellie L. Burns ◽  
Steven K. Hanks ◽  
Andrés J. García

Focal adhesion kinase (FAK) is an essential nonreceptor tyrosine kinase regulating cell migration, adhesive signaling, and mechanosensing. Using FAK-null cells expressing FAK under an inducible promoter, we demonstrate that FAK regulates the time-dependent generation of adhesive forces. During the early stages of adhesion, FAK expression in FAK-null cells enhances integrin activation to promote integrin binding and, hence, the adhesion strengthening rate. Importantly, FAK expression regulated integrin activation, and talin was required for the FAK-dependent effects. A role for FAK in integrin activation was confirmed in human fibroblasts with knocked-down FAK expression. The FAK autophosphorylation Y397 site was required for the enhancements in adhesion strengthening and integrin-binding responses. This work demonstrates a novel role for FAK in integrin activation and the time-dependent generation of cell–ECM forces.


Sign in / Sign up

Export Citation Format

Share Document