scholarly journals Mesenchymal Stem Cells as a Bio Organ for Treatment of Female Infertility

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2253
Author(s):  
Sahar Esfandyari ◽  
Rishi Man Chugh ◽  
Hang-soo Park ◽  
Elie Hobeika ◽  
Mara Ulin ◽  
...  

Female infertility is a global medical condition that can be caused by various disorders of the reproductive system, including premature ovarian failure (POF), polycystic ovary syndrome (PCOS), endometriosis, Asherman syndrome, and preeclampsia. It affects the quality of life of both patients and couples. Mesenchymal stem cells (MSCs) have received increasing attention as a potential cell-based therapy, with several advantages over other cell sources, including greater abundance, fewer ethical considerations, and high capacity for self-renewal and differentiation. Clinical researchers have examined the therapeutic use of MSCs in female infertility. In this review, we discuss recent studies on the use of MSCs in various reproductive disorders that lead to infertility. We also describe the role of microRNAs (miRNAs) and exosomal miRNAs in controlling MSC gene expression and driving MSC therapeutic outcomes. The clinical application of MSCs holds great promise for the treatment of infertility or ovarian insufficiency, and to improve reproductive health for a significant number of women worldwide.

Author(s):  
Sahar Esfandyari ◽  
Rishi Man Chugh ◽  
Hang-Soo Park ◽  
Elie Hobeika ◽  
Mara Ulin ◽  
...  

Female infertility is a global medical condition that can be caused by various disorders of the reproductive system, including premature ovarian failure (POF), polycystic ovary syndrome (PCOS), endometriosis, Asherman syndrome, and preeclampsia. It affects the quality of life of both patients and couples. Mesenchymal stem cells (MSCs) have received increasing attention as a potential cell-based therapy with several advantages over other cell sources, including greater abundance, fewer ethical considerations, and high capacity for self-renewal and differentiation. Clinical researchers have examined the therapeutic use of MSCs in female infertility. In this review, we discuss recent studies on the use of MSCs in various reproductive disorders that lead to infertility. We also describe the role of microRNAs (miRNAs) and exosomal miRNAs in controlling MSC gene expression and driving MSC therapeutic outcomes. The clinical application of MSCs holds great promise for the treatment of infertility or ovarian insufficiency and to improve reproductive health for a significant number of women worldwide.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yun-xia Zhao ◽  
Shao-rong Chen ◽  
Ping-ping Su ◽  
Feng-huang Huang ◽  
Yan-chuan Shi ◽  
...  

Female infertility impacts the quality of life and well-being of affected individuals and couples. Female reproductive diseases, such as primary ovarian insufficiency, polycystic ovary syndrome, endometriosis, fallopian tube obstruction, and Asherman syndrome, can induce infertility. In recent years, translational medicine has developed rapidly, and clinical researchers are focusing on the treatment of female infertility using novel approaches. Owing to the advantages of convenient samples, abundant sources, and avoidable ethical issues, mesenchymal stem cells (MSCs) can be applied widely in the clinic. This paper reviews recent advances in using four types of MSCs, bone marrow stromal cells, adipose-derived stem cells, menstrual blood mesenchymal stem cells, and umbilical cord mesenchymal stem cells. Each of these have been used for the treatment of ovarian and uterine diseases, and provide new approaches for the treatment of female infertility.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xingfu Li ◽  
Yujie Liang ◽  
Xiao Xu ◽  
Jianyi Xiong ◽  
Kan Ouyang ◽  
...  

Background. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) possess great promise as a therapeutic to repair damaged cartilage. Direct intra-articular injection of mesenchymal stem cells has been shown to reduce cartilage damage and is advantageous as surgical implantation and associated side effects can be avoided using this approach. However, the efficacy of stem cell-based therapy for cartilage repair depends highly on the direct interactions of these stem cells with chondrocytes in the joint. In this study, we have carried out an in vitro cell-to-cell contact coculture study with human articular chondrocytes (hACs) and hUC-MSCs, with the goal of this study being to evaluate interactions between hACs and hUC-MSCs. Methods. Low-density monolayer cultures of hUC-MSCs and hACs were mixed at a ratio of 1 : 1 in direct cell-to-cell contact groups. Results were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. Results. A mixed coculture of hUC-MSCs and hACs was found to exhibit synergistic interactions with enhanced differentiation of hUC-MSCs and reduced dedifferentiation of chondrocytes. Mixed cultures after 21 days were found to exhibit sufficient chondrogenic induction. Conclusions. The results from this study suggest the presence of mutual effects between hUC-MSCs and hACs even culture at low density and provide further support for the use of intra-articular injection strategies for cartilage defect treatment.


2019 ◽  
Vol 20 (10) ◽  
pp. 2523 ◽  
Author(s):  
Loubna Mazini ◽  
Luc Rochette ◽  
Mohamed Amine ◽  
Gabriel Malka

Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.


2019 ◽  
Vol 20 (18) ◽  
pp. 4632 ◽  
Author(s):  
Musiał-Wysocka ◽  
Kot ◽  
Sułkowski ◽  
Majka

In recent years, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic modality in regenerative medicine. They hold great promise for treating civilization-wide diseases, including cardiovascular diseases, such as acute myocardial infarction and critical limb ischemia. MSCs isolated from Wharton’s jelly (WJ-MSCs) may be utilized in both cell-based therapy and vascular graft engineering to restore vascular function, thereby providing therapeutic benefits for patients. The efficacy of WJ-MSCs lies in their multipotent differentiation ability toward vascular smooth muscle cells, endothelial cells and other cell types, as well as their capacity to secrete various trophic factors, which are potent in promoting angiogenesis, inhibiting apoptosis and modulating immunoreaction. Ischemic limb disease is caused by insufficient nutrient and oxygen supplies resulting from damaged peripheral arteries. The lack of nutrients and oxygen causes severe tissue damage in the limb, thereby resulting in severe morbidities and mortality. The therapeutic effects of the conventional treatments are still not sufficient. Cell transplantations in small animal model (mice) are vital for deciphering the mechanisms of MSCs’ action in muscle regeneration. The stimulation of angiogenesis is a promising strategy for the treatment of ischemic limbs, restoring blood supply for the ischemic region. In the present study, we focus on the therapeutic properties of the human WJ-MSCs derived product, Cardio. We investigated the role of CardioCell in promoting angiogenesis and relieving hindlimb ischemia. Our results confirm the healing effect of CardioCell and strongly support the use of the WJ-MSCs in regenerative medicine.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yuxiang Liu ◽  
Jingai Fang

Acute kidney injury (AKI) is a heterogeneous syndrome characterized by a dramatic increase in serum creatinine. Mild AKI may merely be confined to kidney damage and resolve within days; however, severe AKI commonly involves extrarenal organ dysfunction and is associated with high mortality. There is no specific pharmaceutical treatment currently available that can reverse the course of this disease. Notably, mesenchymal stem cells (MSCs) show great promise for the management of AKI by targeting multiple pathophysiological pathways to facilitate tubular epithelial cell repair. It has been well established that the unique characteristics of MSCs make them ideal vectors for gene therapy. Thus, genetic modification has been attempted to achieve improved therapeutic outcomes in the management of AKI by overexpressing trophic cytokines or facilitating MSC delivery to renal tissues. The present article provides a comprehensive review of genetic modification strategies targeted at optimizing the therapeutic potential of MSCs in AKI.


Author(s):  
Mohammad Saeedi ◽  
Muhammad Sadeqi Nezhad ◽  
Fatemeh Mehranfar ◽  
Mahdieh Golpour ◽  
Mohammad Ali Esakandari ◽  
...  

: Mesenchymal stem cells (MSCs), a form of adult stem cells, are known to have a self-renewing property and the potential to specialize into a multitude of cells and tissues such as adipocytes, cartilage cells, and fibroblasts. MSCs can migrate and home to the desired target zone where inflammation is present. The unique characteristics of MSCs in repairing, differentiation, regeneration, and its high capacity of immune modulation has attracted tremendous attention for exerting them in clinical purposes, as they contribute to tissue regeneration process and anti-tumor activity. The MSCs-based treatment has demonstrated remarkable applicability towards various diseases such as heart and bone malignancies, and cancer cells. Importantly, genetically engineered MSCs, as a state-of-the-art therapeutic approach, could address some clinical hurdles by systemic secretion of cytokines and other agents with a short half-life and high toxicity. Therefore, understanding the biological aspects and the characteristics of MSCs is an imperative issue of concern. Herein, we provide an overview of the therapeutic application and the biological features of MSCs against different inflammatory diseases and cancer cells. We further shed light on MSCs physiological interaction, such as migration, homing, and tissue repairing mechanisms with different healthy and inflamed tissues.


2019 ◽  
Vol 14 (4) ◽  
pp. 327-336 ◽  
Author(s):  
Carl R. Harrell ◽  
Marina Gazdic ◽  
Crissy Fellabaum ◽  
Nemanja Jovicic ◽  
Valentin Djonov ◽  
...  

Background: Amniotic Fluid Derived Mesenchymal Stem Cells (AF-MSCs) are adult, fibroblast- like, self-renewable, multipotent stem cells. During the last decade, the therapeutic potential of AF-MSCs, based on their huge differentiation capacity and immunomodulatory characteristics, has been extensively explored in animal models of degenerative and inflammatory diseases. Objective: In order to describe molecular mechanisms responsible for the therapeutic effects of AFMSCs, we summarized current knowledge about phenotype, differentiation potential and immunosuppressive properties of AF-MSCs. Methods: An extensive literature review was carried out in March 2018 across several databases (MEDLINE, EMBASE, Google Scholar), from 1990 to present. Keywords used in the selection were: “amniotic fluid derived mesenchymal stem cells”, “cell-therapy”, “degenerative diseases”, “inflammatory diseases”, “regeneration”, “immunosuppression”. Studies that emphasized molecular and cellular mechanisms responsible for AF-MSC-based therapy were analyzed in this review. Results: AF-MSCs have huge differentiation and immunosuppressive potential. AF-MSCs are capable of generating cells of mesodermal origin (chondrocytes, osteocytes and adipocytes), neural cells, hepatocytes, alveolar epithelial cells, insulin-producing cells, cardiomyocytes and germ cells. AF-MSCs, in juxtacrine or paracrine manner, regulate proliferation, activation and effector function of immune cells. Due to their huge differentiation capacity and immunosuppressive characteristic, transplantation of AFMSCs showed beneficent effects in animal models of degenerative and inflammatory diseases of nervous, respiratory, urogenital, cardiovascular and gastrointestinal system. Conclusion: Considering the fact that amniotic fluid is obtained through routine prenatal diagnosis, with minimal invasive procedure and without ethical concerns, AF-MSCs represents a valuable source for cell-based therapy of organ-specific or systemic degenerative and inflammatory diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei-Cheng Tseng ◽  
Pei-Ying Lee ◽  
Ming-Tsun Tsai ◽  
Fu-Pang Chang ◽  
Nien-Jung Chen ◽  
...  

Abstract Background Acute kidney injury (AKI) is an emerging global healthcare issue without effective therapy yet. Autophagy recycles damaged organelles and helps maintain tissue homeostasis in acute renal ischemia-reperfusion (I/R) injury. Hypoxic mesenchymal stem cells (HMSCs) represent an innovative cell-based therapy in AKI. Moreover, the conditioned medium of HMSCs (HMSC-CM) rich in beneficial trophic factors may serve as a cell-free alternative therapy. Nonetheless, whether HMSCs or HMSC-CM mitigate renal I/R injury via modulating tubular autophagy remains unclear. Methods Renal I/R injury was induced by clamping of the left renal artery with right nephrectomy in male Sprague-Dawley rats. The rats were injected with either PBS, HMSCs, or HMSC-CM immediately after the surgery and sacrificed 48 h later. Renal tubular NRK-52E cells subjected to hypoxia-reoxygenation (H/R) injury were co-cultured with HMSCs or treated with HMSC-CM to assess the regulatory effects of HSMCs on tubular autophagy and apoptosis. The association of tubular autophagy gene expression and renal recovery was also investigated in patients with ischemic AKI. Result HMSCs had a superior anti-oxidative effect in I/R-injured rat kidneys as compared to normoxia-cultured mesenchymal stem cells. HMSCs further attenuated renal macrophage infiltration and inflammation, reduced tubular apoptosis, enhanced tubular proliferation, and improved kidney function decline in rats with renal I/R injury. Moreover, HMSCs suppressed superoxide formation, reduced DNA damage and lipid peroxidation, and increased anti-oxidants expression in renal tubular epithelial cells during I/R injury. Co-culture of HMSCs with H/R-injured NRK-52E cells also lessened tubular cell death. Mechanistically, HMSCs downregulated the expression of pro-inflammatory interleukin-1β, proapoptotic Bax, and caspase 3. Notably, HMSCs also upregulated the expression of autophagy-related LC3B, Atg5 and Beclin 1 in renal tubular cells both in vivo and in vitro. Addition of 3-methyladenine suppressed the activity of autophagy and abrogated the renoprotective effects of HMSCs. The renoprotective effect of tubular autophagy was further validated in patients with ischemic AKI. AKI patients with higher renal LC3B expression were associated with better renal recovery. Conclusion The present study describes that the enhancing effect of MSCs, and especially of HMCSs, on tissue autophagy can be applied to suppress renal tubular apoptosis and attenuate renal impairment during renal I/R injury in the rat. Our findings provide further mechanistic support to HMSCs therapy and its investigation in clinical trials of ischemic AKI.


Sign in / Sign up

Export Citation Format

Share Document