scholarly journals Bees in the D: A Message of Conservation from an Urban Environment

Challenges ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Brian Peterson Roest

Examples of urban restoration and rewilding are critical in promoting grass roots efforts to restore ecosystems diversity in built environments. Honey bees are a vital part of many ecosystems, and urban beekeeping is a growing initiative with multiple benefits, spanning from ecological revitalization, to community cooperation, education, and cohesion. Here, we provide our own experience establishing an extensive system of roof top apiaries as cooperative effort between residents, schools, organizations, and businesses in the city of Detroit, Michigan. Our goal was to contribute to both the health of honey bee colonies and the education of their importance to our urban environment, through wide community engagement including interactive children’s educational events. Honey produced from this not-for-profit initiative is donated to local charities and small businesses, for fundraising, and also used for food and beverages in hospitality around the city. Research collaborations with scientists studying honey bee colony health, including the microbiome of honey bees, will explore possible solutions to help protect from pathogens and diseases. Most of all, we hope that this example will be of inspiration to others to take steps towards ecological solutions, in any and every form, within their own communities.

2018 ◽  
Vol 62 (2) ◽  
pp. 223-232
Author(s):  
Dylan Cleary ◽  
Allen L. Szalanski ◽  
Clinton Trammel ◽  
Mary-Kate Williams ◽  
Amber Tripodi ◽  
...  

Abstract A study was conducted on the mitochondrial DNA genetic diversity of feral colonies and swarms of Apis mellifera from ten counties in Utah by sequencing the intergenic region of the cytochrome oxidase (COI-COII) gene region. A total of 20 haplotypes were found from 174 honey bee colony samples collected from 2008 to 2017. Samples belonged to the A (African) (48%); C (Eastern Europe) (43%); M (Western Europe) (4%); and O (Oriental) lineages (5%). Ten African A lineage haplotypes were observed with two unique to Utah among A lineage haplotypes recorded in the US. Haplotypes belonging to the A lineage were observed from six Utah counties located in the southern portion of the State, from elevations as high as 1357 m. All five C lineage haplotypes that were found have been observed from queen breeders in the US. Three haplotypes of the M lineage (n=7) and two of the O lineage (n=9) were also observed. This study provides evidence that honey bees of African descent are both common and diverse in wild populations of honey bees in southern Utah. The high levels of genetic diversity of A lineage honey bee colonies in Utah provide evidence that the lineage may have been established in Utah before the introduction of A lineage honey bees from Brazil to Texas in 1990.


1991 ◽  
Vol 331 (1260) ◽  
pp. 123-129 ◽  

Based on population dynamics, tracheal mite ( Acarapis woodi ) parasitism of colonies of honey bees ( Apis mellifera ) appears to be, potentially at least, regulatory and stable. Empirical and theoretical considerations suggest, however, that intracolony population dynamics of mite-honey bee worker seem to be unstable in managed situations where honey bee worker population is allowed to grow unchecked. Experimental studies showed that tracheal mite population levels increased in a managed honey bee colony but were impaired in one in which brood rearing was interrupted by loss of the queen. Mite densities but not prevalence were lowered in experimental swarms kept from rearing brood. We propose that swarming reduces mite density within a colony, therefore implicating modern techniques of hive management in the sudden historical appearance of the mite on the Isle of Wight.


2015 ◽  
Vol 59 (2) ◽  
pp. 63-72 ◽  
Author(s):  
Lanting Ma ◽  
Ying Wang ◽  
Xiaobo Hang ◽  
Hongfang Wang ◽  
Weiren Yang ◽  
...  

AbstractAlpha-linolenic acid (ALA), which is an n-3 polyunsaturated fatty acid (PUFA), influences honey bee feed intake and longevity. The objective of this study was to research the effect of six dietary ALA levels on the growth and development of Apis mellifera ligustica colonies. In the early spring, a total of 36 honey bee colonies of equal size and queen quality were randomly allocated into 6 groups. The six groups of honey bees were fed a basal diet with supplementation of ALA levels at 0 (group A), 2 (group B), 4 (group C), 6 (group D), 8 (group E), and 10% (group F). In this study, there were significant effects of pollen substitute ALA levels on the feeding amounts of the bee colony, colony population, sealed brood amount, and weight of newly emerged workers (P<0.05). The workers’ midgut Lipase (LPS) activity of group C was significantly lower than that of the other groups (P<0.01). The worker bees in groups B, C, and D had significantly longer lifespans than those in the other groups (P<0.05). However, when the diets had ALA concentrations of more than 6%, the mortality of the honey bees increased (P<0.01). These results indicate that ALA levels of 2 ~ 4% of the pollen substitute were optimal for maintaining the highest reproductive performance and the digestion and absorption of fatty acids in honey bees during the period of spring multiplication. Additionally, ALA levels of 2 ~ 6% of the pollen substitute, improved worker bee longevity.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Thomas D. Seeley

Thomas Seeley's research has focused on analyzing the collective intelligence and natural lives of honey bees. This account describes how the author encountered honey bees as a boy and became a beekeeper; how he switched his career path from medicine to biology to study the behavior and social life of honey bees; and how he focuses on understanding how a honey bee colony functions when it lives in the wild, rather than in a beekeeper's hive. He has shown how a honey bee colony works as a single decision-making unit to adaptively allocate its foragers among flower patches and to choose its nesting site in a hollow tree. These findings buttress the view that, in some social insect species, the colony is a group-level vehicle of gene survival. Beyond his research, he has written three books to synthesize these findings for biologists and share these discoveries with beekeepers. Expected final online publication date for the Annual Review of Entomology, Volume 67 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2014 ◽  
Vol 59 (No. 1) ◽  
pp. 1-10 ◽  
Author(s):  
HF Abou-Shaara

Foraging behaviour is one of the distinctive behaviours of honey bees, Apis mellifera. This behaviour is the link between the honey bee colony and the ambient environment. Therefore, various in-colony and out-colony factors have an impact on this behaviour, and many studies have been employed to investigate these factors. Foraging behaviour is not advantageous only for the colony and for plant pollination but also has other benefits. In contrast, some disadvantages have also been discovered to be linked with foraging activity. Practically speaking, the control over this behaviour is very important to maximize colony products as well as to increase other agricultural benefits. This paper presents a review on foraging activity including; the regulation of foraging tasks, factors impacting this behaviour, foraging preference, variations between subspecies, monitoring methods as well as the possible methods for controlling this behaviour. As concluded from this review, more work needs to be performed in order to elucidate certain aspects of foraging behaviour. &nbsp;


2018 ◽  
Vol 84 (13) ◽  
Author(s):  
Kasie Raymann ◽  
Erick V. S. Motta ◽  
Catherine Girard ◽  
Ian M. Riddington ◽  
Jordan A. Dinser ◽  
...  

ABSTRACT Accumulating evidence suggests that pesticides have played a role in the increased rate of honey bee colony loss. One of the most commonly used pesticides in the United States is the neonicotinoid imidacloprid. Although the primary mode of action of imidacloprid is on the insect nervous system, it has also been shown to cause changes in insects' digestive physiology and alter the microbiota of Drosophila melanogaster larvae. The honey bee gut microbiome plays a major role in bee health. Although many studies have shown that imidacloprid affects honey bee behavior, its impact on the microbiome has not been fully elucidated. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. Consistent with other studies, we show that imidacloprid exposure results in an elevated mortality of honey bees in the hive and increases the susceptibility to infection by pathogens. However, we did not find evidence that imidacloprid affects the gut bacterial community of honey bees. Our in vitro experiments demonstrated that honey bee gut bacteria can grow in the presence of imidacloprid, and we found some evidence that imidacloprid can be metabolized in the bee gut environment. However, none of the individual bee gut bacterial species tested could metabolize imidacloprid, suggesting that the observed metabolism of imidacloprid within in vitro bee gut cultures is not caused by the gut bacteria. Overall, our results indicate that imidacloprid causes increased mortality in honey bees, but this mortality does not appear to be linked to the microbiome. IMPORTANCE Growing evidence suggests that the extensive use of pesticides has played a large role in the increased rate of honey bee colony loss. Despite extensive research on the effects of imidacloprid on honey bees, it is still unknown whether it impacts the community structure of the gut microbiome. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. We found that the exposure to imidacloprid resulted in an elevated mortality of honey bees and increased the susceptibility to infection by opportunistic pathogens. However, we did not find evidence that imidacloprid affects the gut microbiome of honey bees. We found some evidence that imidacloprid can be metabolized in the bee gut environment in vitro , but because it is quickly eliminated from the bee, it is unlikely that this metabolism occurs in nature. Thus, imidacloprid causes increased mortality in honey bees, but this does not appear to be linked to the microbiome.


2017 ◽  
Vol 7 (1) ◽  
pp. 25 ◽  
Author(s):  
J. J. M. Van der Steen ◽  
M. Bergsma-Vlami ◽  
M. Wenneker

In this study we show that honey bee colonies placed in a greenhouse for pollination of strawberry can simultaneously be used to indicate the presence of the plant pathogenic bacterium Erwinia pyrifoliae. This was demonstrated by using two methods of qualitative sacrificial and non-sacrificial bio sampling of the honey bee colony. A novel method for non-sacrificial subsampling, named the Beehold device, was applied. Applying the Beehold device did not disturb or affect negatively the honey bee colony. The study demonstrated that the integration of pollination service and bio-sampling functioned. In the sacrificially derived honey bee subsamples, E. pyrifoliae was detected prior to any visible infection in the plant; however, E. pyrifoliae was detected via non-sacrificial sampling at the same time as plant infection was first observed. The Beehold device is a practical tool for monitoring plant pathogens via forager bees during flowering until fruit onset, but is not as sensitive as directly sampling honey bees.


2019 ◽  
Author(s):  
Lise Ropars ◽  
Isabelle Dajoz ◽  
Colin Fontaine ◽  
Audrey Muratet ◽  
Benoît Geslin

AbstractAs pollinator decline is increasingly reported in natural and agricultural environments, cities are perceived as shelters for pollinators because of low pesticide exposure and high floral diversity throughout the year. This has led to the development of environmental policies supporting pollinators in urban areas. However, policies are often restricted to the promotion of honey bee colony installations, which resulted in a strong increase in apiary numbers in cities. Recently, competition for floral resources between wild pollinators and honey bees has been highlighted in semi-natural contexts, but whether urban beekeeping could impact wild pollinators remains unknown. Here, we show that in the city of Paris (France), wild pollinator visitation rates is negatively correlated to honey bee colony densities present in the surrounding (500m – slope = −0.614; p = 0.001 – and 1000m – slope = −0.489; p = 0.005). More particularly, large solitary bees and beetles were significantly affected at 500m (respectively slope = −0.425, p = 0.007 and slope = - 0.671, p = 0.002) and bumblebees were significantly affected at 1000m (slope = - 0.451, p = 0.012). Further, lower interaction evenness in plant-pollinator networks was observed with honey bee colony densities within 1000 meter buffers (slope = −0.487, p = 0.008). Finally, honey bees tended to focus their foraging activity on managed rather than spontaneous plant species (student t-test, p = 0.001) whereas wild pollinators equally visited managed and spontaneous species. We advocate responsible practices mitigating the introduction of high density of hives in urban environments. Future studies are needed to deepen our knowledge about the potential negative interactions between wild and domesticated pollinators.


Author(s):  
Keith S. Delaplane
Keyword(s):  

Abstract This chapter provides information on bee colony and beekeeper demographics, honey bee biology, honey bees as pollinators, simplified beekeeping for pollination and managing honey bees for pollination.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Beibei Li ◽  
Chunsheng Hou ◽  
Shuai Deng ◽  
Xuefeng Zhang ◽  
Yanna Chu ◽  
...  

Chronic bee paralysis virus (CBPV) is a serious viral disease affecting adult bees. We report here the complete genome sequence of CBPV, which was isolated from a honey bee colony with the symptom of severe crawling. The genome of CBPV consists of two segments, RNA 1 and RNA 2, containing respective overlapping fragments.


Sign in / Sign up

Export Citation Format

Share Document