scholarly journals Indirect Dryers for Biomass Drying—Comparison of Experimental Characteristics for Drum and Rotary Configurations

2020 ◽  
Vol 4 (1) ◽  
pp. 18
Author(s):  
Jan Havlík ◽  
Tomáš Dlouhý

This paper focuses on indirect biomass drying. It compares the operating characteristics of a laboratory-scale drum dryer and a pilot-scale rotary dryer. Before the design of an industrial dryer for a specific material, it is important to experimentally prove the process and to determine the drying characteristics of the material. To verify the portability of experimental results for indirect dryers, a drum dryer with indirect electric heating in a laboratory scale was designed and built to test and study the process of indirect drying. Based on the results obtained on a small-scale device, a prototype of a pilot steam-heated rotary dryer was designed and manufactured. A broad range of experiments with green wood chips and wet bark from open-air storage with moisture contents of 50 to 65 wt % were carried out on both dryers. The drying curves indicating the process, the square and volumetric evaporation capacities, and the drying energy consumption were obtained and compared, and the feasibility of indirect drying for these tested types of biomass was confirmed.

2020 ◽  
Vol 60 (1) ◽  
pp. 49-55
Author(s):  
Jan Havlík ◽  
Tomáš Dlouhý ◽  
Michel Sabatini

This article investigates the effect of the filling ratio of the indirect rotary dryers on their operating characteristics. For moist biomass drying before combustion, the use of indirect drum dryers heated by a low pressure steam has proven to be highly suitable. Regarding the design of new dryers, it is necessary to experimentally verify the operating characteristics for specific materials and drying conditions. For this purpose, a set of experiments on a steam heated rotary drum dryer were carried out with green wood chips containing 60 to 66 wt% of moisture. The following operational characteristics of the dryer were experimentally determined: drying curves describing the process, square and volumetric evaporation capacities and drying heat consumptions. Based on the experimental results, the effect of various drum filling by dried material on the mentioned operating characteristics was analysed. On the one hand, higher drum filling ratio increases the drying time, on the other hand, the evaporation capacity also increases, while the specific energy consumption does not significantly alter. The maximum value of the evaporation capacity was reached when the drum was filled to 20 wt%. When the filling ratio was increased to 25 wt%, the evaporation capacity experienced almost no change.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 179-188 ◽  
Author(s):  
K. F. Janning ◽  
X. Le Tallec ◽  
P. Harremoës

Hydrolysis and degradation of particulate organic matter has been isolated and investigated in laboratory scale and pilot scale biofilters. Wastewater was supplied to biofilm reactors in order to accumulate particulates from wastewater in the filter. When synthetic wastewater with no organic matter was supplied to the reactors, hydrolysis of the particulates was the only process occurring. Results from the laboratory scale experiments under aerobic conditions with pre-settled wastewater show that the initial removal rate is high: rV, O2 = 2.1 kg O2/(m3 d) though fast declining towards a much slower rate. A mass balance of carbon (TOC/TIC) shows that only 10% of the accumulated TOC was transformed to TIC during the 12 hour long experiment. The pilot scale hydrolysis experiment was performed in a new type of biofilm reactor - the B2A® biofilter that is characterised by a series of decreasing sized granular media (80-2.5 mm). When hydrolysis experiments were performed on the anoxic pilot biofilter with pre-screened wastewater particulates as carbon source, a rapid (rV, NO3=0.7 kg NO3-N/(m3 d)) and a slowler (rV, NO3 = 0.3 kg NO3-N/(m3 d)) removal rate were observed at an oxygen concentration of 3.5 mg O2/l. It was found that the pilot biofilter could retain significant amounts of particulate organic matter, reducing the porosity of the filter media of an average from 0.35 to 0.11. A mass balance of carbon shows that up to 40% of the total incoming TOC accumulates in the filter at high flow rates. Only up to 15% of the accumulated TOC was transformed to TIC during the 24 hour long experiment.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Tae Young Kim ◽  
Seong Bin Jo ◽  
Jin Hyeok Woo ◽  
Jong Heon Lee ◽  
Ragupathy Dhanusuraman ◽  
...  

Co–Fe–Al catalysts prepared using coprecipitation at laboratory scale were investigated and extended to pilot scale for high-calorific synthetic natural gas. The Co–Fe–Al catalysts with different metal loadings were analyzed using BET, XRD, H2-TPR, and FT-IR. An increase in the metal loading of the Co–Fe–Al catalysts showed low spinel phase ratio, leading to an improvement in reducibility. Among the catalysts, 40CFAl catalyst prepared at laboratory scale afforded the highest C2–C4 hydrocarbon time yield, and this catalyst was successfully reproduced at the pilot scale. The pelletized catalyst prepared at pilot scale showed high CO conversion (87.6%), high light hydrocarbon selectivity (CH4 59.3% and C2–C4 18.8%), and low byproduct amounts (C5+: 4.1% and CO2: 17.8%) under optimum conditions (space velocity: 4000 mL/g/h, 350 °C, and 20 bar).


2021 ◽  
Vol 11 (4) ◽  
pp. 1788
Author(s):  
Thanh-Tri Do ◽  
Binh-Nguyen Ong ◽  
Tuan-Loc Le ◽  
Thanh-Cong Nguyen ◽  
Bich-Huy Tran-Thi ◽  
...  

In the production of astaxanthin from Haematococcus pluvialis, the process of growing algal biomass in the vegetative green stage is an indispensable step in both suspended and immobilized cultivations. The green algal biomass is usually cultured in a suspension under a low light intensity. However, for astaxanthin accumulation, the microalgae need to be centrifuged and transferred to a new medium or culture system, a significant difficulty when upscaling astaxanthin production. In this research, a small-scale angled twin-layer porous substrate photobioreactor (TL-PSBR) was used to cultivate green stage biomass of H. pluvialis. Under low light intensities of 20–80 µmol photons m−2·s−1, algae in the biofilm consisted exclusively of non-motile vegetative cells (green palmella cells) after ten days of culturing. The optimal initial biomass density was 6.5 g·m−2, and the dry biomass productivity at a light intensity of 80 µmol photons m−2·s−1 was 6.5 g·m−2·d−1. The green stage biomass of H. pluvialis created in this small-scale angled TL-PSBR can be easily harvested and directly used as the source of material for the inoculation of a pilot-scale TL-PSBR for the production of astaxanthin.


2019 ◽  
Vol 79 (2) ◽  
pp. 314-322 ◽  
Author(s):  
F. Licciardello ◽  
R. Aiello ◽  
V. Alagna ◽  
M. Iovino ◽  
D. Ventura ◽  
...  

Abstract This study aims at defining a methodology to evaluate Ks reductions of gravel material constituting constructed wetland (CW) bed matrices. Several schemes and equations for the Lefranc's test were compared by using different gravel sizes and at multiple spatial scales. The falling-head test method was implemented by using two steel permeameters: one impervious (IMP) and one pervious (P) on one side. At laboratory scale, mean K values for a small size gravel (8–15 × 10−2 m) measured by the IMP and the P permeameters were equal to 19,466 m/d and 30,662 m/d, respectively. Mean Ks values for a big size gravel (10–25 × 10−2 m) measured by the IMP and the P permeameters were equal to 12,135 m/d and 20,866 m/d, respectively. Comparison of Ks values obtained by the two permeameters at laboratory scale as well as a sensitivity analysis and a calibration, lead to the modification of the standpipe equation, to evaluate also the temporal variation of the horizontal Ks. In particular, both permeameters allow the evaluation of the Ks decreasing after 4 years-operation and 1–1.5 years' operation of the plants at full scale (filled with the small size gravel) and at pilot scale (filled with the big size gravel), respectively.


2009 ◽  
Vol 3 (3) ◽  
pp. 289-292 ◽  
Author(s):  
Ruifang Wang ◽  
Zhanyong Li ◽  
Yanhua Li ◽  
Jingsheng Ye

2014 ◽  
pp. 5-12
Author(s):  
Tamás Antal

In this study, the effects of freeze drying (FD), hot-air drying (HAD) and combined drying (HAD-FD) on drying characteristics, energy uptake, texture, rehydration and color of carrot were investigated. Results showed that HAD-FD significantly improved the drying time compared with FD under the same operating conditions, and the HAD-FD can reduce the total cost of dehydration. The drying kinetics was described by the Henderson-Pabis and the third degree polynomial models in the case of HAD, FD and HAD-FD. The HAD carrot samples were exhibited shrinkage, case hardening, poor rehydration and brown surface. The FD carrot cubes appeared porous structure, excellent rehydration, soft texture and loose color. The HAD-FD samples were superior to HAD products and was nearer in quality to FD products with respect to appearance, rehydration and surface resistance (texture). Finally, it is concluded that HAD-FD is effective in improving the FD drying rate. However, the combined drying has a small-scale adverse effect on product quality.


Author(s):  
Hasham Khan

The rapid increase in the population and fastest development in the industrial sector has increased the energy demand throughout the world. Frequent outages and load shedding has seriously deteriorated the efficiency of the electrical power distribution system. Under such circumstances, the implementation of Distributed Generation (DG) is increasing. Small hydel generators are considered as the most-clean and economical for generating electrical energy. These are very complex nonlinear generators which usually exhibits low frequency electromechanical oscillations due to insufficient damping caused by severe operating conditions. These DGs are not connected to the utility in many cases because, under varying load, they cannot maintain the frequency to the permissible value. This work presents detailed analysis of operating characteristics and proposes a hybrid frequency control strategy of the small hydel systems. The simulation and testing is performed in MATLAB, the results verified the improved performance with the recommended method. The proposed method conserves half of the power consumption. The control scheme regulates the dump load by connecting and disconnecting it affectively. The application of presented methodology is convenient in the deregulated environment, especially under the severe shortage of energy. The proposed model keeps the frequency of system at desired level. It reduces the noise, thereby improving the response time of the designed controller as compared to conventional controllers. The innovative scheme also provides power for small scale industrial, agricultural and other domestic application of far-off areas where the supply of utility main grid is difficult to provide. The recommended scheme is environmental friendly and easy to implement wherever small hydel resources are available.


2009 ◽  
Vol 9 (5) ◽  
pp. 601-609 ◽  
Author(s):  
J. Fu ◽  
J. Huang ◽  
Z. Liu ◽  
Q. F. Zeng ◽  
S. Q. An ◽  
...  

The photochemical oxidation of 4-chlorophenol solutions by ultraviolet irradiation/sodium hypochlorite (UV/NaClO) and ultraviolet irradiation/ozonation (UV/O3) respectively was studied in a pilot scale photochemical reactor. The degradation efficiency of UV/NaClO was lower than that of UV/O3. The final UV absorption removals of the two processes were approximately 80% and approximately 90% respectively. During the two processes, dihydroxylated chlorophenols were the main intermediates. And pH values decreased with the oxidation being carried on. However, the UV/NaClO process was incomplete and some adsorbable organic halogens, such as ethyl 2-chloroacetate, 3,4-dichlorobut-3-en-2-one, ethyl 2,2-dichloroacetate, 2-chloro-1,1-diethoxyethane, ethyl 2,2,2-trichloroacetate and 2,4,6-trichlorophenol, still existed in the final solution. The costs of the two processes were also estimated. On a small scale, UV/NaClO process had significant economic advantage.


2017 ◽  
Vol 13 ◽  
pp. 960-987 ◽  
Author(s):  
Chinmay A Shukla ◽  
Amol A Kulkarni

The implementation of automation in the multistep flow synthesis is essential for transforming laboratory-scale chemistry into a reliable industrial process. In this review, we briefly introduce the role of automation based on its application in synthesis viz. auto sampling and inline monitoring, optimization and process control. Subsequently, we have critically reviewed a few multistep flow synthesis and suggested a possible control strategy to be implemented so that it helps to reliably transfer the laboratory-scale synthesis strategy to a pilot scale at its optimum conditions. Due to the vast literature in multistep synthesis, we have classified the literature and have identified the case studies based on few criteria viz. type of reaction, heating methods, processes involving in-line separation units, telescopic synthesis, processes involving in-line quenching and process with the smallest time scale of operation. This classification will cover the broader range in the multistep synthesis literature.


Sign in / Sign up

Export Citation Format

Share Document