scholarly journals An Overview of Natural Polymers as Reinforcing Agents for 3D Printing

2021 ◽  
Vol 5 (4) ◽  
pp. 78
Author(s):  
Beatrice Sabbatini ◽  
Alessandra Cambriani ◽  
Marco Cespi ◽  
Giovanni Filippo Palmieri ◽  
Diego Romano Perinelli ◽  
...  

Three-dimensional (3D) printing, or additive manufacturing, is a group of innovative technologies that are increasingly employed for the production of 3D objects in different fields, including pharmaceutics, engineering, agri-food and medicines. The most processed materials by 3D printing techniques (e.g., fused deposition modelling, FDM; selective laser sintering, SLS; stereolithography, SLA) are polymeric materials since they offer chemical resistance, are low cost and have easy processability. However, one main drawback of using these materials alone (e.g., polylactic acid, PLA) in the manufacturing process is related to the poor mechanical and tensile properties of the final product. To overcome these limitations, fillers can be added to the polymeric matrix during the manufacturing to act as reinforcing agents. These include inorganic or organic materials such as glass, carbon fibers, silicon, ceramic or metals. One emerging approach is the employment of natural polymers (polysaccharides and proteins) as reinforcing agents, which are extracted from plants or obtained from biomasses or agricultural/industrial wastes. The advantages of using these natural materials as fillers for 3D printing are related to their availability together with the possibility of producing printed specimens with a smaller environmental impact and higher biodegradability. Therefore, they represent a “green option” for 3D printing processing, and many studies have been published in the last year to evaluate their ability to improve the mechanical properties of 3D printed objects. The present review provides an overview of the recent literature regarding natural polymers as reinforcing agents for 3D printing.

2021 ◽  
Vol 18 (1) ◽  
pp. 07-13
Author(s):  
Neha Thakur ◽  
Hari Murthy

Three-dimensional printing (3DP) is a digitally-controlled additive manufacturing technique used for fast prototyping. This paper reviews various 3D printing techniques like Selective Laser Sintering (SLS), Fused Deposition Modeling, (FDM), Semi-solid extrusion (SSE), Stereolithography (SLA), Thermal Inkjet (TIJ) Printing, and Binder jetting 3D Printing along with their application in the field of medicine. Normal medicines are based on the principle of “one-size-fits-all”. This is not true always, it is possible medicine used for curing one patient is giving some side effects to another. To overcome this drawback “3D Printed medicines” are developed. In this paper, 3D printed medicines forming different Active Pharmaceutical Ingredients (API) are reviewed. Printed medicines are capable of only curing the diseases, not for the diagnosis. Nanomedicines have “theranostic” ability which combines therapeutic and diagnostic. Nanoparticles are used as the drug delivery system (DDS) to damaged cells’ specific locations. By the use of nanomedicine, the fast recovery of the disease is possible. The plant-based nanoparticles are used with herbal medicines which give low-cost and less toxic medication called nanobiomedicine. 4D and 5D printing technology for the medical field are also enlightened in this paper.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2682
Author(s):  
Obinna Okolie ◽  
Iwona Stachurek ◽  
Balasubramanian Kandasubramanian ◽  
James Njuguna

There is a rising demand for replacement, regeneration of tissues and organ repairs for patients who suffer from diseased/damaged bones or tissues such as hip pains. The hip replacement treatment relies on the implant, which may not always meet the requirements due to mechanical and biocompatibility issues which in turn may aggravate the pain. To surpass these limitations, researchers are investigating the use of scaffolds as another approach for implants. Three-dimensional (3D) printing offers significant potential as an efficient fabrication technique on personalized organs as it is capable of biomimicking the intricate designs found in nature. In this review, the determining factors for hip replacement and the different fabrication techniques such as direct 3D printing, Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS) and stereolithography (SLA) for hip replacement. The study also covers surface modifications of 3D printed implants and provides an overview on 3D tissue regeneration. To appreciate the current conventional hip replacement practices, the conventional metallic and ceramic materials are covered, highlighting their rationale as the material of choice. Next, the challenges, ethics and trends in the implants’ 3D printing are covered and conclusions drawn. The outlook and challenges are also presented here. The knowledge from this review indicates that 3D printing has enormous potential for providing a pathway for a sustainable hip replacement.


2020 ◽  
Vol 14 (1) ◽  
pp. 150-161
Author(s):  
Salmabanu Luhar ◽  
Ismail Luhar

This research paper presents a scientific attempt of a comprehensive systematic review of three-dimensional printing in geopolymer construction technology. The concept of 3D printing is an automated manufacturing process, layer- by- layer command, with computer-aided design model to create physical objects, acquiring swift development for the last few decades. An expansion of novel Geopolymer technology has been adopted in the construction and infrastructure industries for decades. The critical challenges of construction and infrastructure industries, such as the need for architectural, holistic, and rational designs, can be dealt with 3D printing techniques. Plentiful advantages of this emerging novel technology include a reduced amount of cost, ease of construction, a lesser amount of time, freedom of design, less wastage, aptitude to create complex structures, decrease in labor requirements, etc. Accordingly, The paper discusses common 3D techniques, such as Fused Deposition Modelling, Selective Laser Sintering, Stereolithography, 3D plotting, Laminated Object Manufacturing technique, Direct Energy deposition technique or laser engineered net shaping, Powder Bed Fusion and Inject Head 3D printing and direct deposition method. Overall, this study provides an introduction of 3D printing automation and robotics processes in a geopolymer construction industry. Ultimately, the paper emphasizes to motivate researchers towards future studies about 3D printing.


2017 ◽  
Vol 23 (3) ◽  
pp. 433-439 ◽  
Author(s):  
Jingjunjiao Long ◽  
Hamideh Gholizadeh ◽  
Jun Lu ◽  
Craig Bunt ◽  
Ali Seyfoddin

Three-dimensional (3D) printing is an emerging manufacturing technology for biomedical and pharmaceutical applications. Fused deposition modelling (FDM) is a low cost extrusion-based 3D printing technique that can deposit materials layer-by-layer to create solid geometries. This review article aims to provide an overview of FDM based 3D printing application in developing new drug delivery systems. The principle methodology, suitable polymers and important parameters in FDM technology and its applications in fabrication of personalised tablets and drug delivery devices are discussed in this review. FDM based 3D printing is a novel and versatile manufacturing technique for creating customised drug delivery devices that contain accurate dose of medicine( s) and provide controlled drug released profiles.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1524
Author(s):  
Sadikalmahdi Abdella ◽  
Souha H. Youssef ◽  
Franklin Afinjuomo ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
...  

Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Harald Rupp ◽  
Wolfgang H. Binder

Additive manufacturing has significantly changed polymer science and technology by engineering complex material shapes and compositions. With the advent of dynamic properties in polymeric materials as a fundamental principle to achieve, e.g., self-healing properties, the use of supramolecular chemistry as a tool for molecular ordering has become important. By adjusting molecular nanoscopic (supramolecular) bonds in polymers, rheological properties, immanent for 3D printing, can be adjusted, resulting in shape persistence and improved printing. We here review recent progress in the 3D printing of supramolecular polymers, with a focus on fused deposition modelling (FDM) to overcome some of its limitations still being present up to date and open perspectives for their application.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 985 ◽  
Author(s):  
Lazaros Tzounis ◽  
Petros I. Bangeas ◽  
Aristomenis Exadaktylos ◽  
Markos Petousis ◽  
Nectarios Vidakis

A versatile method is reported for the manufacturing of antimicrobial (AM) surgery equipment utilising fused deposition modelling (FDM), three-dimensional (3D) printing and sonochemistry thin-film deposition technology. A surgical retractor was replicated from a commercial polylactic acid (PLA) thermoplastic filament, while a thin layer of silver (Ag) nanoparticles (NPs) was developed via a simple and scalable sonochemical deposition method. The PLA retractor covered with Ag NPs (PLA@Ag) exhibited vigorous AM properties examined by a reduction in Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) bacteria viability (%) experiments at 30, 60 and 120 min duration of contact (p < 0.05). Scanning electron microscopy (SEM) showed the surface morphology of bare PLA and PLA@Ag retractor, revealing a homogeneous and full surface coverage of Ag NPs. X-Ray diffraction (XRD) analysis indicated the crystallinity of Ag nanocoating. Ultraviolent-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM) highlighted the AgNP plasmonic optical responses and average particle size of 31.08 ± 6.68 nm. TEM images of the PLA@Ag crossection demonstrated the thickness of the deposited Ag nanolayer, as well as an observed tendency of AgNPs to penetrate though the outer surface of PLA. The combination of 3D printing and sonochemistry technology could open new avenues in the manufacturing of low-cost and on-demand antimicrobial surgery equipment.


2010 ◽  
Vol 441 ◽  
pp. 155-179 ◽  
Author(s):  
Ulrike Deisinger

For tissue regeneration in medicine three-dimensional scaffolds with specific characteristics are required. A very important property is a high, interconnecting porosity to enable tissue ingrowth into the scaffold. Pore size distribution and pore geometry should be adapted to the respective tissue. Additionally, the scaffolds should have a basic stability for handling during implantation, which is provided by ceramic scaffolds. Various methods to produce such ceramic 3D scaffolds exist. In this paper conventional and new fabrication techniques are reviewed. Conventional methods cover the replica of synthetic and natural templates, the use of sacrificial templates and direct foaming. Rapid prototyping techniques are the new methods listed in this work. They include fused deposition modelling, robocasting and dispense-plotting, ink jet printing, stereolithography, 3D-printing, selective laser sintering/melting and a negative mould technique also involving rapid prototyping. The various fabrication methods are described and the characteristics of the resulting scaffolds are pointed out. Finally, the techniques are compared to find out their disadvantages and advantages.


2020 ◽  
Author(s):  
Michael Yue-Cheng Chen ◽  
Jacob Skewes ◽  
Ryan Daley ◽  
Maria Ann Woodruff ◽  
Nicholas John Rukin

Abstract BackgroundThree-dimensional (3D) printing is a promising technology but the limitations are often poorly understood. We compare different 3D printingmethods with conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market. MethodsA prototype dilator was 3D printed vertically orientated on a low cost fused deposition modelling (FDM) 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on a SLS 3D printer in medical nylon. The dilator was also machined in stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped. ResultsThe horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators respectively (503g vs 283g vs 163g, p < 0.001). The SLS nylon dilator and machined steel dilator did not fail. The steel dilator is most expensive with a quantity of five at 98 USD each, but this decreases to 30 USD each for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD each for five and 27 USD each for 1000. ConclusionsAt the current time 3D printing is not a replacement for conventional manufacturing. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot otherwise beachieved.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3737
Author(s):  
Yousef Lafi A. Alshammari ◽  
Feiyang He ◽  
Muhammad A. Khan

Three-dimensional (3D) printing is one of the significant industrial manufacturing methods in the modern era. Many materials are used for 3D printing; however, as the most used material in fused deposition modelling (FDM) technology, acrylonitrile butadiene styrene (ABS) offers good mechanical properties. It is perfect for making structures for industrial applications in complex environments. Three-dimensional printing parameters, including building orientation, layers thickness, and nozzle size, critically affect the crack growth in FDM structures under complex loads. Therefore, this paper used the dynamic bending vibration test to investigate their influence on fatigue crack growth (FCG) rate under dynamic loads and the Paris power law constant C and m. The paper proposed an analytical solution to determine the stress intensity factor (SIF) at the crack tip based on the measurement of structural dynamic response. The experimental results show that the lower ambient temperature, as well as increased nozzle size and layer thickness, provide a lower FCG rate. The printing orientation, which is the same as loading, also slows the crack growth. The linear regression between these parameters and Paris Law’s coefficient also proves the same conclusion.


Sign in / Sign up

Export Citation Format

Share Document