scholarly journals Preparation and Characterization of Polyethylene Biocomposites Reinforced by Rice Husk: Application as Potential Packaging Material

Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1344-1362
Author(s):  
Emi Govorcin Bajsic ◽  
Ana Persic ◽  
Tomislav Jemric ◽  
Josip Buhin ◽  
Dajana Kucic Grgic ◽  
...  

The development of biodegradable materials as food packaging material is important not only due to the reduction in environmental pollution but also because of an improvement in the functionality. Rice husk-reinforced biopolymers have offered a possible solution to waste-disposal problems associated with traditional petroleum-derived plastics. Rice husk-reinforced low density polyethylene (LDPE)-based biocomposites have been of great interest for their use as food packaging material. In this work, the LDPE/RH biocomposites with different rice husk (RH) content (10, 20, 30, 40 and 50 wt. %) were prepared by the melt mixing process in a laboratory Brabender mixer. The effect of RH content on the physical, thermal and mechanical properties of LDPE was investigated. More importantly, this work aimed to research the biodegradation of the LDPE/RH biocomposites as well as their effect on ‘Granny Smith’ apples’ respiration. The results showed that the incorporation of RH into the LDPE decreased the thermal stability of LDPE, increased water vapour permeability and water absorption, and increased the degree of crystallinity. The incorporation of RH increased the biodegradability of LDPE as well as the postharvest quality of ‘Granny Smith’ apples. The addition of RH in LDPE film significantly decreased fruit respiration and increased firmness as compared to LDPE film. The composting results showed that after the LDPE/RH biocomposite films were biodegraded for 21 days, the biocomposite films with the highest content of rice husks were the most degraded.

Author(s):  
Agata Sommer ◽  
Hanna Staroszczyk ◽  
Izabela Sinkiewicz ◽  
Piotr Bruździak

AbstractThe food packaging materials from natural polymers including polysaccharides offer an ecologically important alternative to commonly used synthetic, non-biodegradable counterparts. The purpose of this work was to modify of bacterial cellulose (BC) leading to the improvement of its functional properties in terms of use as a food packaging material. Effects of disintegration of BC and addition of montmorillonite (MMT) on its water barrier, mechanical and thermal properties were investigated. Disintegration of BC increased its water vapour permeability (WVP) and thermal stability, but decreased its tensile strength (σ). These changes were closely related to the rearrangement of hydrogen-bond network in the BC structure, resulting in a partial conversion from the Iα to Iβ allomorph. The addition of 2% of MMT did not affect WVP and σ of the disintegrated BC (bBC), while the plasticization of the modified bBC generally decreased WVP, and did not increase σ. The improvement in water barrier properties of bBC modified by adding 2% of MMT in the presence of glycerol was caused by the formation of hydrogen bonds between the components of the composite. The results presented show the potential usefulness of BC modified by disintegration and adding 2% of MMT and 10–15% of glycerol as a food packaging material.


Food Research ◽  
2021 ◽  
Vol 5 (6) ◽  
pp. 204-210
Author(s):  
S. Agustin ◽  
E.T. Wahyuni ◽  
Suparmo ◽  
Supriyadi ◽  
M.N. Cahyanto

Biocomposite of bacterial cellulose-alginate has been developed for use as food packaging material. This study aims to understand the physical and mechanical properties of the biocomposite produced from static fermentation of Gluconacetobacter xylinus InaCC B404 in media supplemented with alginate. The strain was grown in a medium containing alginate at a concentration of 0.4, 0.8, and 1.2% w/v at 30oC for 7 days. The SEM images showed that bacterial cellulose produced in a medium supplemented with alginate had a denser structure of fibril network and a smaller pore size than the control one. The structure change was due to interactions through hydrogen bonds between bacterial cellulose and alginate proven by FTIR spectra, resulting in a decrease in crystallinity and crystallite size of bacterial cellulose. It led to the decrease in tensile and tear strength of the resulting biocomposite. Alginate also causes biocomposite to have higher water vapour permeability values.


2019 ◽  
Vol 25 (4) ◽  
pp. 506-514 ◽  
Author(s):  
Himanshu Gupta ◽  
Harish Kumar ◽  
Mohit Kumar ◽  
Avneesh Kumar Gehlaut ◽  
Ankur Gaur ◽  
...  

The current study stresses on the reuse of waste lignocellulose biomass (rice husk and sugarcane bagasse) for the synthesis of carboxymethyl cellulose (CMC) and further conversion of this CMC into a biodegradable film. Addition of commercial starch was done to form biodegradable film due to its capacity to form a continuous matrix. Plasticizers such as Glycerol and citric acid were used to provide flexibility and strength to the film. Biopolymer film obtained from sugarcane bagasse CMC showed maximum tensile strength and elongation in comparison to the film synthesized from commercial CMC and CMC obtained from rice husk. It has been observed that an increase in sodium glycolate/NaCl content in CMC imposed an adverse effect on tensile strength. Opacity, moisture content, and solubility of the film increased with a rise in the degree of substitution of CMC. Therefore, CMC obtained from sugarcane bagasse was better candidate in preparing biopolymer/biocomposite film.


2019 ◽  
Vol 60 (2) ◽  
pp. 250-256 ◽  
Author(s):  
Fatma Masmoudi ◽  
Sébastien Alix ◽  
Stéphane Buet ◽  
Afef Mehri ◽  
Atef Bessadok ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1594 ◽  
Author(s):  
Maziyar Makaremi ◽  
Hosnieh Yousefi ◽  
Giuseppe Cavallaro ◽  
Giuseppe Lazzara ◽  
Calvin Bok Sun Goh ◽  
...  

Extensive usage of long-lasting petroleum based plastics for short-lived application such as packaging has raised concerns regarding their role in environmental pollution. In this research, we have developed active, healable, and safely dissolvable alginate-pectin based biocomposites that have potential applications in food packaging. The morphological study revealed the rough surface of these biocomposite films. Tensile properties indicated that the fabricated samples have mechanical properties in the range of commercially available packaging films while possessing excellent healing efficiency. Biocomposite films exhibited higher hydrophobicity properties compared to neat alginate films. Thermal analysis indicated that crosslinked biocomposite samples possess higher thermal stability in temperatures below 120 °C, while antibacterial analysis against E. coli and S. aureus revealed the antibacterial properties of the prepared samples against different bacteria. The fabricated biodegradable multi-functional biocomposite films possess various imperative properties, making them ideal for utilization as packaging material.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 804 ◽  
Author(s):  
Arianna Pietrosanto ◽  
Paola Scarfato ◽  
Luciano Di Maio ◽  
Maria Rossella Nobile ◽  
Loredana Incarnato

The use of biopolymers can reduce the environmental impact generated by plastic materials. Among biopolymers, blends made of poly(lactide) (PLA) and poly(butylene-adipate-co-terephthalate) (PBAT) prove to have adequate performances for food packaging applications. Therefore, the present work deals with the production and the characterization of blown films based on PLA and PBAT blends in a wide range of compositions, in order to evaluate their suitability as chilled and frozen food packaging materials, thus extending their range of applications. The blends were fully characterized: they showed the typical two-phase structure, with a morphology varying from fibrillar to globular in accordance with their viscosity ratio. The increase of PBAT content in the blends led to a decrease of the barrier properties to oxygen and water vapor, and to an increase of the toughness of the films. The mechanical properties of the most ductile blends were also evaluated at 4 °C and −25 °C. The decrease in temperature caused an increase of the stiffness and a decrease of the ductility of the films to a different extent, depending upon the blend composition. The blend with 40% of PLA revealed to be a good candidate for chilled food packaging applications, while the blend with a PLA content of 20% revealed to be the best composition as frozen food packaging material.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2152 ◽  
Author(s):  
Beatriz Melendez-Rodriguez ◽  
Sergio Torres-Giner ◽  
Abdulaziz Aldureid ◽  
Luis Cabedo ◽  
Jose M. Lagaron

Novel green composites based on commercial poly(3-hydroxybutyrate) (PHB) filled with 10 wt % rice husk flour (RHF) were melt-compounded in a mini-mixer unit using triglycidyl isocyanurate (TGIC) as compatibilizer and dicumyl peroxide (DCP) as initiator. Purified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) produced by mixed bacterial cultures derived from fruit pulp waste was then incorporated into the green composite in contents in the 5–50 wt % range. Films for testing were obtained thereafter by thermo-compression and characterized. Results showed that the incorporation of up to 20 wt % of biowaste derived PHBV yielded green composite films with a high contact transparency, relatively low crystallinity, high thermal stability, improved mechanical ductility, and medium barrier performance to water vapor and aroma. This study puts forth the potential use of purified biosustainably produced PHBV as a cost-effective additive to develop more affordable and waste valorized food packaging articles.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3984-3998 ◽  
Author(s):  
Siti Hajar Othman ◽  
Nurul Atiqah Najhah Tarmiti ◽  
Ruzanna Ahmad Shapi'i ◽  
Siti Marian Mohd Zahiruddin ◽  
Intan Syafinaz Mohammed Amin Tawakkal ◽  
...  

Banana pseudostems (BP) are a promising cellulose source that remains underutilized despite its potential to be formed as biodegradable food packaging material. This work was directed towards utilizing BP waste in a powder form to produce potential food packaging material that is environmentally friendly. A solvent casting method was used to produce starch/BP films at different BP percentage compositions (0, 10, 20, 30, and 40 wt% on the dry basis of starch). The effects of different percentage compositions of BP in starch on the morphology, optical, mechanical, and barrier properties of the films were investigated. The optical and mechanical properties of the starch films decreased with the addition of BP. However, the mechanical and barrier properties of the films improved with the increase in BP composition. An optimum percentage composition of 40 wt% BP powder can be utilized to produce starch/BP films for potential food packaging application.


Sign in / Sign up

Export Citation Format

Share Document