scholarly journals Wicking in Paper Strips under Consideration of Liquid Absorption Capacity

Chemosensors ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 65
Author(s):  
Surasak Kasetsirikul ◽  
Muhammad J. A. Shiddiky ◽  
Nam-Trung Nguyen

Paper-based microfluidic devices have the potential of being a low-cost platform for diagnostic devices. Electrical circuit analogy (ECA) model has been used to model the wicking process in paper-based microfluidic devices. However, material characteristics such as absorption capacity cannot be included in the previous ECA models. This paper proposes a new model to describe the wicking process with liquid absorption in a paper strip. We observed that the fluid continues to flow in a paper strip, even after the fluid reservoir has been removed. This phenomenon is caused by the ability of the paper to store liquid in its matrix. The model presented in this paper is derived from the analogy to the current response of an electric circuit with a capacitance. All coefficients in the model are fitted with data of capillary rise experiments and compared with direct measurement of the absorption capacity. The theoretical data of the model agrees well with experimental data and the conventional Washburn model. Considering liquid absorption capacity as a capacitance helps to explain the relationship between material characteristics and the wicking mechanism.

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 475
Author(s):  
Ewa Piotrowska ◽  
Krzysztof Rogowski

The paper is devoted to the theoretical and experimental analysis of an electric circuit consisting of two elements that are described by fractional derivatives of different orders. These elements are designed and performed as RC ladders with properly selected values of resistances and capacitances. Different orders of differentiation lead to the state-space system model, in which each state variable has a different order of fractional derivative. Solutions for such models are presented for three cases of derivative operators: Classical (first-order differentiation), Caputo definition, and Conformable Fractional Derivative (CFD). Using theoretical models, the step responses of the fractional electrical circuit were computed and compared with the measurements of a real electrical system.


2018 ◽  
Vol 29 (12) ◽  
pp. 3210-3219 ◽  
Author(s):  
Takuma Oba ◽  
Kohei Tahara ◽  
Yasutomi Kato ◽  
Ryoichi Sonoda ◽  
Yoshiaki Kawashima ◽  
...  

2020 ◽  
Vol 76 (11) ◽  
pp. 1092-1103
Author(s):  
Yong Zi Tan ◽  
John L. Rubinstein

Blotting times for conventional cryoEM specimen preparation complicate time-resolved studies and lead to some specimens adopting preferred orientations or denaturing at the air–water interface. Here, it is shown that solution sprayed onto one side of a holey cryoEM grid can be wicked through the grid by a glass-fiber filter held against the opposite side, often called the `back', of the grid, producing a film suitable for vitrification. This process can be completed in tens of milliseconds. Ultrasonic specimen application and through-grid wicking were combined in a high-speed specimen-preparation device that was named `Back-it-up' or BIU. The high liquid-absorption capacity of the glass fiber compared with self-wicking grids makes the method relatively insensitive to the amount of sample applied. Consequently, through-grid wicking produces large areas of ice that are suitable for cryoEM for both soluble and detergent-solubilized protein complexes. The speed of the device increases the number of views for a specimen that suffers from preferred orientations.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 772
Author(s):  
Dongkyun Shin ◽  
Jinyoung Lee ◽  
Jongwoon Park

With an attempt to achieve high-density fine organic stripes for potential applications in solution-processable organic light-emitting diodes (OLEDs), we have performed slot-die coatings using a shim with slit channels in various shapes (rectangular-shaped narrow, rectangular-shaped wide, and reversely tapered channels) in the presence of narrow µ-tips. Based on hydraulic-electric circuit analogy, we have analyzed the fluid dynamics of an aqueous poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) (PEDOT:PSS). It is observed that the coating speed can be increased and the stripe width can be reduced using a shim with rectangular-shaped wide slit channels. It is attributed that the hydraulic resistance is decreased and thus more fluid can reach a substrate through µ-tips. This behavior is consistent with the simulation result of the equivalent electrical circuit with a DC voltage source representing a pressure source. Using the shim with 150-µm-wide slit channels, we have successfully fabricated 200 PEDOT:PSS stripes within the effective coating width (150 mm) and 160 OLED stripes (34 stripes per inch) with the luminance of 325 cd/m2 at 5 V.


Author(s):  
R. Giles Harrison ◽  
Maarten H. P. Ambaum ◽  
Michael Lockwood

Cosmic rays modify current flow in the global atmospheric electrical circuit. Charging at horizontal layer cloud edges has been observed to be consistent with global circuit vertical current flow through the cloud, which can modify the properties of small and pure water droplets. Studies have been hampered by the absence of cloud edge observations, hence cloud base height information is investigated here. Cloud base height measured at the Lerwick Observatory, Shetland, UK, is analysed using threshold tests and spectral analysis. The cloud base height distributions for low cloud (cloud base less than 800 m) are found to vary with cosmic ray conditions. Further, 27 day and 1.68 year periodicities characteristic of cosmic ray variations are present, weakly, in the cloud base height data of stratiform clouds, when such periodicities are present in neutron monitor cosmic ray data. These features support the idea of propagation of heliospheric variability into layer clouds, through the global atmospheric electric circuit.


2017 ◽  
Vol 35 (2) ◽  
pp. 189-201 ◽  
Author(s):  
Subramanian Gurubaran ◽  
Manu Shanmugam ◽  
Kaliappan Jawahar ◽  
Kaliappan Emperumal ◽  
Prasanna Mahavarkar ◽  
...  

Abstract. The Earth's electrical environment hosts a giant electrical circuit, often referred to as the global electric circuit (GEC), linking the various sources of electrical generators located in the lower atmosphere, the ionosphere and the magnetosphere. The middle atmosphere (stratosphere and mesosphere) has been traditionally believed to be passively transmitting electric fields generated elsewhere. Some observations have reported anomalously large electric fields at these altitudes, and the scientific community has had to revisit the earlier hypothesis time and again. At stratospheric altitudes and especially at low latitudes, horizontal electric fields are believed to be of ionospheric origin. Though measurements of these fields from a balloon platform are challenging because of their small magnitudes (around a few mV m−1), a suitably designed long-duration balloon experiment capable of detecting such small fields can provide useful information on the time evolution of ionospheric electric fields, which is otherwise possible only using radar or satellite in situ measurements. We present herein details of one such experiment, BEENS (Balloon Experiment on the Electrodynamics of Near Space), carried out from a low-latitude site in India. The instrument package for this experiment is comprised of four deployable booms for measurements of horizontal electric fields and one inclined boom for vertical electric field measurements, all equipped with conducting spheres at the tip. The experiment was conducted from Hyderabad (17.5° N, 78.6° E) during the post-midnight hours on 14 December 2013. In spite of a few shortcomings we report herein, a noticeable feature of the observations has been the detection of horizontal electric fields of ∼ 5 mV m−1 at the stratospheric altitudes of ∼ 35 km.


2013 ◽  
Vol 860-863 ◽  
pp. 1260-1264 ◽  
Author(s):  
Nian Qin Wang ◽  
Qing Tao Wang ◽  
Xiao Ling Liu ◽  
Qi Pang

Based on the understanding of diseases of building’s foundation and manmade slope caused by water capillary rise, this thesis carried out a large number of laboratory tests by selfdeveloped absorption permeameter for unsaturated soil, in order to explore the capillary transport law of unsaturated soil. The thesis obtains some valuable results and conclusions: The moisture content shows minishing trend as the seepage fronts increasing, and reflects the gravitational potential of normal relations with the capillary action; (2) the water seepage frontal Hω% relation curve has no obvious inflection point, but the initial water content has an certain influence on the capillary moisture content distribution, the moisture content uses the initial moisture content of 12.5%, 9.8%, 8.0% and5.3% for testing showed an increasing trend at 4 cm and 16 cm sections, and the moisture content at the same section increased with the initial moisture content increasing, this reflects the rule that the smaller the moisture content is, the greater the matric potential, the water absorption capacity becomes stronger. (3)The moisture content difference between 4 cm and 16 cm of the initial moisture content is 12.5%, 9.8%, 8.0% and 9.8% is 1.48 %, 1.5 %, 1.7 % and 2.2 %, indicating that the smaller the initial moisture content is, the difference at the vertical section is greater. Finally, based on the relationship of Hω% curve, the thesis establishes the grey correlation prediction model, and forecasts the maximum capillary height of Lishi loess is 182cm.


Author(s):  
Elnur Hasanov Elnur Hasanov

This article examines solar energy, ways to increase efficiency in the production of solar energy, the solar tracking system and the importance of its construction, as well as the principles of building this system. An electric circuit based on the H-bridge scheme has been proposed for the automatic control of the solar tracking system. The working principle of the electric circuit based on the H-bridge circuit is explained. It has been shown that the efficiency of a solar tracking system depends on the performance of the element base, motor and software used in the system. A truth table has been compiled to ensure motor control and to write the appropriate controller program. Keywords: Solar energy, solar panel, motor, H-bridge circuit


2021 ◽  
Author(s):  
Mikhail Basov

Research of pressure sensor chip utilizing novel electrical circuit with bipolar-junction transistor-based (BJT) piezosensitive differential amplifier with negative feedback loop (PDA-NFL) for 5 kPa differential range was done. The significant advantages of developed chip PDA-NFL in the comparative analysis of advanced pressure sensor analogs, which are using the Wheatstone piezoresistive bridge, are clearly shown. The experimental results prove that pressure sensor chip PDA-NFL with 4.0x4.0 mm<sup>2</sup> chip area has sensitivity S = 11.2 ± 1.8 mV/V/kPa with nonlinearity of 2K<sub>NLback</sub> = 0.11 ± 0.09 %/FS (pressure is applied from the back chip side) and 2K<sub>NLtop</sub> = 0.18 ± 0.09 %/FS (pressure is applied from the top chip side). All temperature characteristics have low errors, because the precision elements balance of PDA-NFL electric circuit was used. Additionally, the burst pressure is 80 times higher than the working range.


2019 ◽  
Vol 4 (4) ◽  
pp. p241
Author(s):  
M. Ben Moussa ◽  
M. Abdellaoui

Based on the experimental impedance spectra, the electrochemical reactions that are deposed at the electrode-electrolyte interface can be modeled by equivalent electrical circuits. Each element used in the circuit must have a physical correspondence in the electrochemical system. In this work, a model has been proposed to a NiMH battery electrode to describe, in detail, the electrochemical process at the interface of this electrode. The theoretical impedance of a proposed circuit is a function of several variables. These adjusted variables to reach a good agreement between the theoretical spectra and the experimental spectra in the studied frequency. The Z-simplex software allows refining the experimental results. These results show a good superposition between the experimental spectra and the theoretical spectra corresponding to the proposed electric circuit. This leads to the conclusion that the proposed circuit describes the phenomena that take place at the interface of the hydride electrode.


Sign in / Sign up

Export Citation Format

Share Document