scholarly journals A Scoping Review of Modifiable Risk Factors in Pediatric Onset Multiple Sclerosis: Building for the Future

Children ◽  
2018 ◽  
Vol 5 (11) ◽  
pp. 146 ◽  
Author(s):  
Julie Pétrin ◽  
Max Fiander ◽  
Prenitha Doss ◽  
E. Yeh

Knowledge of the effect of modifiable lifestyle factors in the pediatric multiple sclerosis (MS) population is limited. We therefore conducted a scoping review, following the framework provided by Arksey and O’Malley. Four databases were searched for pediatric MS and modifiable lifestyle factors using index terms and keywords, from inception to May 2018. All quantitative and qualitative primary articles were included and limited to English and full text. Of the 7202 articles identified and screened, 25 full-text articles were relevant to our objective and were included. These articles focused on diet obesity, physical activity, and sleep. In cross-sectional analyses, these lifestyle factors were associated with increased risk of pediatric onset MS (POMS), and increased disease activity. Diet, particularly vitamin D and vegetable intake, was associated with reduced relapse rate. Obesity was linked to increased risk of POMS, and physical activity was associated with reduced relapse rate and sleep/rest fatigue. Thus, available studies of lifestyle related outcomes in pediatric MS suggest specific lifestyle related factors, including obesity, higher vitamin D levels, and higher physical activity may associate with lower disease burden in POMS. Studies reviewed are limited by their observational designs. Future studies with longitudinal and experimental designs may further clarify the role of modifiable lifestyle factors in this population.

2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
Cristy Phillips

The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains, changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational studies have shown that modifiable lifestyle factors—including physical activity, cognitive engagement, and diet—are a key strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians. Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chung Yuan Chang ◽  
Kanimolli Arasu ◽  
Soon Yee Wong ◽  
Shu Hwa Ong ◽  
Wai Yew Yang ◽  
...  

Abstract Background Modifiable lifestyle factors and body composition can affect the attainment of peak bone mass during childhood. This study performed a cross-sectional analysis of the determinants of bone health among pre-adolescent (N = 243) Malaysian children with habitually low calcium intakes and vitamin D status in Kuala Lumpur (PREBONE-Kids Study). Methods Body composition, bone mineral density (BMD), and bone mineral content (BMC) at the lumbar spine (LS) and total body (TB) were assessed using dual-energy X-ray absorptiometry (DXA). Calcium intake was assessed using 1-week diet history, MET (metabolic equivalent of task) score using cPAQ physical activity questionnaire, and serum 25(OH) vitamin D using LC-MS/MS. Results The mean calcium intake was 349 ± 180 mg/day and mean serum 25(OH)D level was 43.9 ± 14.5 nmol/L. In boys, lean mass (LM) was a significant predictor of LSBMC (β = 0.539, p < 0.001), LSBMD (β = 0.607, p < 0.001), TBBMC (β = 0.675, p < 0.001) and TBBMD (β = 0.481, p < 0.01). Height was a significant predictor of LSBMC (β = 0.346, p < 0.001) and TBBMC (β = 0.282, p < 0.001) while fat mass (FM) (β = 0.261, p = 0.034) and physical activity measured as MET scores (β = 0.163, p = 0.026) were significant predictors of TBBMD in boys. Among girls, LM was also a significant predictor of LSBMC (β = 0.620, p < 0.001), LSBMD (β = 0.700, p < 0.001), TBBMC (β = 0.542, p < 0.001) and TBBMD (β = 0.747, p < 0.001). Calcium intake was a significant predictor of LSBMC (β = 0.102, p = 0.034), TBBMC (β = 0.122, p < 0.001) and TBBMD (β = 0.196, p = 0.002) in girls. Conclusions LM was the major determinant of BMC and BMD among pre-adolescent Malaysian children alongside other modifiable lifestyle factors such as physical activity and calcium intake.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2175
Author(s):  
Winnie Siew Swee Chee ◽  
Chung Yuan Chang ◽  
Kanimolli Arasu ◽  
Soon Yee Wong ◽  
Shu Hwa Ong ◽  
...  

Studies on vitamin D status and its determinants in growing children in countries with ample sunshine such as Malaysia have been limited. The aim of our study was to determine factors associated with serum 25(OH)D concentrations such as lifestyle, dietary intake, anthropometry, and body composition in 243 pre-adolescent Malaysian children from low-income families living in Kuala Lumpur. This cross-sectional study measured bone density and body composition using dual-energy X-ray absorptiometry (DXA), while serum 25(OH)D was measured using LC–MS/MS. Time spent outdoors, body surface area exposed to sunlight, dietary intake, and physical activity level were assessed using questionnaires. Multiple linear regression and stepwise analysis were performed to identify significant predictors for serum 25(OH)D. About 69.4% had 25(OH)D < 50 nmol/L, and 18.9% were vitamin-D-deficient with 25(OH)D < 30 nmol/L. Girls had a nine-fold higher prevalence of vitamin D deficiency than boys. Body surface area exposed to sunlight, Sun Index, and fat mass were significant predictors of 25(OH)D concentrations in this population. Modifiable lifestyle factors such as sun exposure and reducing obesity are important public health guidance to ensure optimal vitamin D status in these children.


2009 ◽  
Vol 15 (5) ◽  
pp. 563-570 ◽  
Author(s):  
JL Dickinson ◽  
DI Perera ◽  
AF van der Mei ◽  
A-L Ponsonby ◽  
AM Polanowski ◽  
...  

Multiple studies have provided evidence for an association between reduced sun exposure and increased risk of multiple sclerosis (MS), an association likely to be mediated, at least in part, by the vitamin D hormonal pathway. Herein, we examine whether the vitamin D receptor ( VDR), an integral component of this pathway, influences MS risk in a population-based sample where winter sun exposure in early childhood has been found to be an important determinant of MS risk. Three polymorphisms within the VDR gene were genotyped in 136 MS cases and 235 controls, and associations with MS and past sun exposure were examined by logistic regression. No significant univariate associations between the polymorphisms, rs11574010 ( Cdx-2A > G), rs10735810 ( Fok1T >  C), or rs731236 ( Taq1C > T) and MS risk were observed. However, a significant interaction was observed between winter sun exposure during childhood, genotype at rs11574010, and MS risk ( P = 0.012), with the ‘G’ allele conferring an increased risk of MS in the low sun exposure group (≤2 h/day). No significant interactions were observed for either rs10735810 or rs731236, after stratification by sun exposure. These data provide support for the involvement of the VDR gene in determining MS risk, an interaction likely to be dependent on past sun exposure.


2022 ◽  
pp. 135245852110699
Author(s):  
Amin Ziaei ◽  
Amy M Lavery ◽  
Xiaorong MA Shao ◽  
Cameron Adams ◽  
T Charles Casper ◽  
...  

Background: We previously reported a relationship between air pollutants and increased risk of pediatric-onset multiple sclerosis (POMS). Ozone is an air pollutant that may play a role in multiple sclerosis (MS) pathoetiology. CD86 is the only non-HLA gene associated with POMS for which expression on antigen-presenting cells (APCs) is changed in response to ozone exposure. Objectives: To examine the association between county-level ozone and POMS, and the interactions between ozone pollution, CD86, and HLA- DRB1*15, the strongest genetic variant associated with POMS. Methods: Cases and controls were enrolled in the Environmental and Genetic Risk Factors for Pediatric MS study of the US Network of Pediatric MS Centers. County-level-modeled ozone data were acquired from the CDC’s Environmental Tracking Network. Participants were assigned ozone values based on county of residence. Values were categorized into tertiles based on healthy controls. The association between ozone tertiles and having MS was assessed by logistic regression. Interactions between tertiles of ozone level and the GG genotype of the rs928264 (G/A) single nucleotide polymorphism (SNP) within CD86, and the presence of DRB1*15:01 ( DRB1*15) on odds of POMS were evaluated. Models were adjusted for age, sex, genetic ancestry, and mother’s education. Additive interaction was estimated using relative excess risk due to interaction (RERI) and attributable proportions (APs) of disease were calculated. Results: A total of 334 POMS cases and 565 controls contributed to the analyses. County-level ozone was associated with increased odds of POMS (odds ratio 2.47, 95% confidence interval (CI): 1.69–3.59 and 1.95, 95% CI: 1.32–2.88 for the upper two tertiles, respectively, compared with the lowest tertile). There was a significant additive interaction between high ozone tertiles and presence of DRB1*15, with a RERI of 2.21 (95% CI: 0.83–3.59) and an AP of 0.56 (95% CI: 0.33–0.79). Additive interaction between high ozone tertiles and the CD86 GG genotype was present, with a RERI of 1.60 (95% CI: 0.14–3.06) and an AP of 0.37 (95% CI: 0.001–0.75) compared to the lowest ozone tertile. AP results indicated that approximately half of the POMS risk in subjects can be attributed to the possible interaction between higher county-level ozone carrying either DRB1*15 or the CD86 GG genotype. Conclusions: In addition to the association between high county-level ozone and POMS, we report evidence for additive interactions between higher county-level ozone and DRB1*15 and the CD86 GG genotype. Identifying gene–environment interactions may provide mechanistic insight of biological processes at play in MS susceptibility. Our work suggests a possible role of APCs for county-level ozone-induced POMS risk.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1229 ◽  
Author(s):  
Shivaprakash Jagalur Mutt ◽  
Jari Jokelainen ◽  
Sylvain Sebert ◽  
Juha Auvinen ◽  
Marjo-Riitta Järvelin ◽  
...  

Introduction: Vitamin D deficiency has been linked to the increased risk of several chronic diseases, especially in people living in the Northern Latitudes. The aim of this study was to assess the vitamin D status in older subjects born in 1945 in Northern Finland (latitude 65°North), and to examine its associations to components of metabolic syndrome (MetS). Methods: In this cross-sectional study, we invited 904 subjects born in 1945 from the Oulu region (Oulu45 cohort), out of an original cohort of 1332 subjects. In the cohort, plasma 25 hydroxyvitamin D (25OHD) levels were determined by an enzyme immunoassay of 263 men and 373 women, with a mean age baseline of 69±0.5 years old. We assessed the participants’ usage of vitamin D supplements, as well as their lifestyle factors, using a questionnaire. Results: Nearly 80% of the subjects had low vitamin D levels [either vitamin D deficient (<50 nmol/L) or insufficient (50 – 75 nmol/L)], and only 20% of the participants had sufficient vitamin D levels (>75 nmol/L) (based on the American Endocrine Society guidelines). The low vitamin D status was associated with a high prevalence of MetS; a significantly higher number of subjects with MetS (41%) had low vitamin D levels in comparison to the non-MetS subjects (38%) (p ≤ 0.05). The subjects under vitamin D supplementation had a significantly lower incidence of MetS (42.6% vs 57.4%) and its components in comparison to the non-supplemented subjects (p ≤ 0.05). Conclusions: Low vitamin D levels are a risk factor for MetS amongst other lifestyle factors, such as dietary habits and physical inactivity, among older subjects in the Northern Latitudes (65°North). Optimal supplementation of vitamin D, along with rich dietary sources of vitamin D, are highly recommended for older subjects as a means to positively affect, e.g., hypertension, insulin resistance, and obesity, as components of the MetS.


Sign in / Sign up

Export Citation Format

Share Document