scholarly journals High Caloric Diet Induces Memory Impairment and Disrupts Synaptic Plasticity in Aged Rats

2021 ◽  
Vol 43 (3) ◽  
pp. 2305-2319
Author(s):  
Sara L. Paulo ◽  
Catarina Miranda-Lourenço ◽  
Rita F. Belo ◽  
Rui S. Rodrigues ◽  
João Fonseca-Gomes ◽  
...  

The increasing consumption of sugar and fat seen over the last decades and the consequent overweight and obesity, were recently linked with a deleterious effect on cognition and synaptic function. A major question, which remains to be clarified, is whether obesity in the elderly is an additional risk factor for cognitive impairment. We aimed at unravelling the impact of a chronic high caloric diet (HCD) on memory performance and synaptic plasticity in aged rats. Male rats were kept on an HCD or a standard diet (control) from 1 to 24 months of age. The results showed that under an HCD, aged rats were obese and displayed significant long-term recognition memory impairment when compared to age-matched controls. Ex vivo synaptic plasticity recorded from hippocampal slices from HCD-fed aged rats revealed a reduction in the magnitude of long-term potentiation, accompanied by a decrease in the levels of the brain-derived neurotrophic factor receptors TrkB full-length (TrkB-FL). No alterations in neurogenesis were observed, as quantified by the density of immature doublecortin-positive neurons in the hippocampal dentate gyrus. This study highlights that obesity induced by a chronic HCD exacerbates age-associated cognitive decline, likely due to impaired synaptic plasticity, which might be associated with deficits in TrkB-FL signaling.

2021 ◽  
Author(s):  
Rachel Pass ◽  
Niels Haan ◽  
Trevor Humby ◽  
Lawrence S Wilkinson ◽  
Jeremy Hall ◽  
...  

Mutations affecting DLG2 are emerging as a genetic risk factor associated with neurodevelopmental psychiatric disorders including schizophrenia, autism spectrum disorder and bipolar disorder. Discs large homolog 2 (DLG2) is a member of the membrane-associated guanylate kinase protein superfamily of scaffold proteins, a component of the post-synaptic density in excitatory neurons and regulator of synaptic function and plasticity. It remains an important question whether and how haploinsuffiency of DLG2 contributes to impairments in basic behavioural and cognitive functions that may underlie symptomatic domains in patients that cross diagnostic boundaries. Using a heterozygous Dlg2 mouse model we examined the impact of reduced Dlg2 expression on functions commonly impaired in neurodevelopmental psychiatric disorders including motor co-ordination and learning, pre-pulse inhibition and habituation to novel stimuli. The heterozygous Dlg2 mice exhibited behavioural impairments in long-term motor learning and long-term habituation to a novel context, but not motor co-ordination, initial responses to a novel context, PPI of acoustic startle or anxiety. We additionally showed evidence for the reduced regulation of the synaptic plasticity-associated protein cFos in the motor cortex during motor learning. The sensitivity of selective behavioural and cognitive functions, particularly those dependent on synaptic plasticity, to reduced expression of DLG2 give further credence for DLG2 playing a critical role in specific brain functions but also a mechanistic understanding of symptom expression shared across psychiatric disorders.


2009 ◽  
Vol 37 (6) ◽  
pp. 1364-1368 ◽  
Author(s):  
Peter R. Moult ◽  
Jenni Harvey

It is well established that leptin is a circulating hormone that enters the brain and regulates food intake and body weight via its hypothalamic actions. However, it is also known that leptin receptors are widely expressed in the CNS (central nervous system), and evidence is accumulating that leptin modulates many neuronal functions. In particular, recent studies have indicated that leptin plays an important role in the regulation of hippocampal synaptic plasticity. Indeed leptin-insensitive rodents display impairments in hippocampal synaptic plasticity and defects in spatial memory tasks. We have also shown that leptin facilitates the induction of hippocampal LTP (long-term potentiation) via enhancing NMDA (N-methyl-D-aspartate) receptor function and that leptin has the ability to evoke a novel form of NMDA receptor-dependent LTD (long-term depression). In addition, leptin promotes rapid alterations in hippocampal dendritic morphology and synaptic density, which are likely to contribute to the effects of this hormone on excitatory synaptic strength. Recent studies have demonstrated that trafficking of AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptors is pivotal for activity-dependent hippocampal synaptic plasticity. However, little is known about how AMPA receptor trafficking processes are regulated by hormonal systems. In the present paper, we discuss evidence that leptin rapidly alters the trafficking of AMPA receptors to and away from hippocampal CA1 synapses. The impact of these leptin-driven changes on hippocampal excitatory synaptic function are discussed.


2014 ◽  
Vol 369 (1633) ◽  
pp. 20130147 ◽  
Author(s):  
Igor Klyubin ◽  
Tomas Ondrejcak ◽  
Jennifer Hayes ◽  
William K. Cullen ◽  
Alexandra J. Mably ◽  
...  

Many endogenous factors influence the time course and extent of the detrimental effects of amyloid β-protein (Aβ) on synaptic function. Here, we assessed the impact of varying endogenous glutamatergic and cholinergic transmission by pharmacological means on the disruption of plasticity at hippocampal CA3-to-CA1 synapses in the anaesthetized rat. NMDA receptors (NMDARs) are considered critical in mediating Aβ-induced inhibition of long-term potentiation (LTP). However, intracerebroventricular injection of Aβ 1–42 inhibited not only NMDAR-dependent LTP but also voltage-activated Ca 2+ -dependent LTP induced by strong conditioning stimulation during NMDAR blockade. On the other hand, another form of NMDAR-independent synaptic plasticity, endogenous acetylcholine-induced muscarinic receptor-dependent long-term enhancement, was not hindered by Aβ 1–42 . Interestingly, augmenting endogenous acetylcholine activation of nicotinic receptors prior to the injection of Aβ 1–42 prevented the inhibition of NMDAR-dependent LTP, whereas the same intervention when introduced after the infusion of Aβ was ineffective. We also examined the duration of action of Aβ, including water soluble Aβ from Alzheimer's disease (AD) brain. Remarkably, the inhibition of LTP induction caused by a single injection of sodium dodecyl sulfate-stable Aβ dimer-containing AD brain extract persisted for at least a week. These findings highlight the need to increase our understanding of non-NMDAR mechanisms and of developing novel means of overcoming, rather than just preventing, the deleterious synaptic actions of Aβ.


Author(s):  
V.A. Vokina

Long-term consequences of impaired perinatal development are very significant. They appear during the neonatal period and in the first years of life, and persist during ontogenesis. There is little data on the impact of any prenatal factors on the sensitivity of a sexually mature organism to medications. The aim of the study is to assess the impact of early life stress on the development of individual antidepressant sensitivity. Materials and Methods. The authors conducted the experiments on sexually mature outbred male rats. To simulate the early life stress, a standard protocol was used. From the 2nd to 15th days of the postnatal period the pup rats were separated from their mother for 3 hours and kept in an incubator. The open-field test, Porsolt test and Sucrose consumption test were used to determine rat’s anxiety level as well as motor, orientation and exploratory activity at puberty. Then, for 14 days, the rats were intragastrically administered with a fluoxetine solution (10 mg/kg/daily), followed by their full examination. Statistical analysis of results was performed using the Mann-Whitney U-test to compare unrelated groups and Wilcoxon's test to compare related groups. Results. Fluoxetine did not have a pronounced antidepressant effect in animals that survived the early life stress. Such animals demonstrated passive floating during the Porsolt test, without any changes in immobility time. When testing in an open field, a sharp increase in the number of freezing behavior was observed, which was an indicator of an increased anxiety level in animals. Conclusion. The results obtained indicate that the long-term effects of neonatal stress may be associated with a change in antidepressant sensitivity or an increase in development of unwanted adverse reactions. Keywords: early life stress, depression, antidepressants, fluoxetine, rats. Отдаленные последствия нарушения перинатального развития весьма значительны и не только проявляются в период новорожденности и в первые годы жизни, но и сохраняются в период онтогенеза. Данные о влиянии каких-либо пренатальных факторов на чувствительность половозрелого организма к действию лекарственных веществ в доступной литературе представлены незначительно. Цель исследования – оценить роль стресса раннего периода жизни в формировании индивидуальной чувствительности к действию антидепрессантов. Материалы и методы. Эксперименты проведены на половозрелых беспородных крысах-самцах. Для моделирования стресса раннего периода жизни использовали стандартный протокол, подразумевающий отделение детенышей от матери со 2-го по 15-й дни постнатального периода на 3 ч в условиях инкубатора. В половозрелом возрасте проводили оценку уровня тревожности, двигательной и ориентировочно-исследовательской активности крыс в условиях теста открытого поля, теста Порсолта и теста «Потребление раствора сахарозы». Затем в течение 14 дней крысам внутрижелудочно вводили раствор флуоксетина (10 мг/кг/сут), после чего обследование повторяли в том же объеме. Статистический анализ результатов исследования проводили с использованием U-критерия Манна–Уитни для сравнения несвязанных групп и критерия Вилкоксона для сравнения связанных групп. Результаты. У животных, переживших стресс раннего периода жизни, флуоксетин не оказывал выраженного антидепрессантного действия. У данных животных в тесте Порсолта преобладало пассивное плавание, без изменения длительности иммобильности. При тестировании в открытом поле наблюдалось резкое повышение числа актов фризинга, что является показателем повышенного уровня тревожности у животных. Выводы. Полученные результаты свидетельствуют о том, что отдаленные последствия неонатального стресса могут быть связанны с изменением чувствительности к действию антидепрессантов или повышением риска развития нежелательных побочных реакций. Ключевые слова: стресс раннего периода жизни, депрессия, антидепрессанты, флуоксетин, крысы.


2018 ◽  
Vol 25 (3) ◽  
pp. 208-226 ◽  
Author(s):  
Zahid Padamsey ◽  
William J. Foster ◽  
Nigel J. Emptage

Ca2+ is an essential trigger for most forms of synaptic plasticity. Ca2+ signaling occurs not only by Ca2+ entry via plasma membrane channels but also via Ca2+ signals generated by intracellular organelles. These organelles, by dynamically regulating the spatial and temporal extent of Ca2+ elevations within neurons, play a pivotal role in determining the downstream consequences of neural signaling on synaptic function. Here, we review the role of three major intracellular stores: the endoplasmic reticulum, mitochondria, and acidic Ca2+ stores, such as lysosomes, in neuronal Ca2+ signaling and plasticity. We provide a comprehensive account of how Ca2+ release from these stores regulates short- and long-term plasticity at the pre- and postsynaptic terminals of central synapses.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 934 ◽  
Author(s):  
Gabriela E. Leghi ◽  
Merryn J. Netting ◽  
Philippa F. Middleton ◽  
Mary E. Wlodek ◽  
Donna T. Geddes ◽  
...  

Maternal obesity has been associated with changes in the macronutrient concentration of human milk (HM), which have the potential to promote weight gain and increase the long-term risk of obesity in the infant. This article aimed to provide a synthesis of studies evaluating the effects of maternal overweight and obesity on the concentrations of macronutrients in HM. EMBASE, MEDLINE/PubMed, Cochrane Library, Scopus, Web of Science, and ProQuest databases were searched for relevant articles. Two authors conducted screening, data extraction, and quality assessment independently. A total of 31 studies (5078 lactating women) were included in the qualitative synthesis and nine studies (872 lactating women) in the quantitative synthesis. Overall, maternal body mass index (BMI) and adiposity measurements were associated with higher HM fat and lactose concentrations at different stages of lactation, whereas protein concentration in HM did not appear to differ between overweight and/or obese and normal weight women. However, given the considerable variability in the results between studies and low quality of many of the included studies, further research is needed to establish the impact of maternal overweight and obesity on HM composition. This is particularly relevant considering potential implications of higher HM fat concentration on both growth and fat deposition during the first few months of infancy and long-term risk of obesity.


2002 ◽  
Vol 92 (3) ◽  
pp. 1191-1198 ◽  
Author(s):  
Joseph S. Tash ◽  
Donald C. Johnson ◽  
George C. Enders

The International Space Station will allow extended habitation in space and long-term exposure to microgravity (μG). A concern is the impact of long-term μG exposure on the ability of species to reproduce. The model often used to simulate μG is rat hindlimb suspension (HLS), where the hindlimbs are elevated above the cage floor with a tail harness. Experiments described here are the first to examine the effect of long-term HLS on testicular function in adult male rats. Free-roaming (controls), animals with only the tail harnessed but hindlimbs in contact with the cage floor (TO), and HLS animals were tested for 6 wk. Cryptorchidism was prevented in TO and HLS animals by partial constriction of the inguinal canal with sutures. All parameters were compared at the end of the 6-wk experiment. Testicular weights and spermatogenesis were significantly reduced by HLS, such that no spermatogenic cells beyond round spermatids were present and epididymides were devoid of mature sperm. In many tubules, loss of all germ cells, except a few spermatogonia, resulting in histopathology similar to the Sertoli cell, was observed. Spermatogenesis appeared unaffected in control and TO animals. Sertoli and Leydig cell appearance, testosterone, luteinizing hormone, and follicle-stimulating hormone levels, and epididymal and seminal vesicle weight were unchanged by HLS. Cortisone was not elevated by HLS; thus stress may not be a factor. These results demonstrate that spermatogenesis is severely inhibited by long-term HLS, whereas testicular androgen production is not. These results have significant implications regarding serious effects of long-term exposure to μG on the reproductive capability of scrotal mammals, including humans.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 532
Author(s):  
Krzysztof Juchacz ◽  
Patrycja Kłos ◽  
Violetta Dziedziejko ◽  
Rafał W. Wójciak

Overweight and obesity are among the most widespread health problems worldwide. The primary cause of obesity is an inability to control overeating. Therefore, today, obesity needs to be treated more as an eating disorder, i.e., a mental disorder, and thus, it should be approached as such. Taking the above together, this study aimed to assess the impact of supportive psychotherapy on reducing body weight in young overweight and obese women who attempted slimming therapy and, additionally, the possibility of maintaining the weight-loss effect in the long term. Sixty young women aged 20–30 were randomized into three groups that differed in therapeutic management. With the help of an individually selected diet plan, the highest effectiveness in weight loss was demonstrated in people whose weight reduction was supported by goal-oriented psychotherapy. In this group, a sustained effect of slimming and even further weight loss were observed six months following the discontinuation of the therapy. In conclusion, traditional slimming therapies using an individual diet plan and a dietitian’s care are effective; however, supportive psychotherapeutic work provides more beneficial results and maintains the change from a long-term perspective.


2014 ◽  
Vol 121 (2) ◽  
pp. 302-310 ◽  
Author(s):  
Kazuhiro Uchimoto ◽  
Tomoyuki Miyazaki ◽  
Yoshinori Kamiya ◽  
Takahiro Mihara ◽  
Yukihide Koyama ◽  
...  

Abstract Background: General anesthesia induces long-lasting cognitive and learning deficits. However, the underlying mechanism remains unknown. The GluA1 subunit of AMPAR is a key molecule for learning and synaptic plasticity, which requires trafficking of GluA1-containing AMPARs into the synapse. Methods: Adult male rats were exposed to 1.8% isoflurane for 2 h and subjected to an inhibitory avoidance task, which is a hippocampus-dependent contextual fear learning paradigm (n = 16 to 39). The in vitro extracellular field potential of hippocampal synapses between the Schaffer collateral and the CA1 was evaluated using a multielectrode recorder (n = 6 per group). GluA1 expression in the synaptoneurosome was assessed using Western blotting (n = 5 to 8). The ubiquitination level of GluA1 was evaluated using immunoprecipitation and Western blotting (n = 7 per group). Results: Seven days after exposure to 1.8% isoflurane for 2 h (Iso1.8), the inhibitory avoidance learning (control vs. Iso1.8; 294 ± 34 vs. 138 ± 28, the mean ± SEM [%]; P = 0.002) and long-term potentiation (125.7 ± 6.1 vs. 105.7 ± 3.3; P < 0.001) were impaired. Iso1.8 also temporarily increased GluA1 in the synaptoneurosomes (100 ± 9.7 vs. 138.9 ± 8.9; P = 0.012) and reduced the GluA1 ubiquitination, a main degradation pathway of GluA1 (100 ± 8.7 vs. 71.1 ± 6.1; P = 0.014). Conclusions: Isoflurane impairs hippocampal learning and modulates synaptic plasticity in the postanesthetic period. Increased GluA1 may reduce synaptic capacity for additional GluA1-containing AMPARs trafficking.


Sign in / Sign up

Export Citation Format

Share Document