scholarly journals Mechanical Properties of Hybrid Structures Incorporating Nano-Silica and Basalt Fiber Pellets

CivilEng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 909-928
Author(s):  
Ahmed Bediwy ◽  
Ehab F. El-Salakawy

Recently, developing a nonferrous reinforcement system (corrosion-free system) using durable and ductile cement-based materials that incorporate discrete fibers has been a promising option for exposed concrete structures in cold regions or marine environments. Therefore, in this study, properties of a novel type of cementitious composite comprising nano-silica and a high dosage of slag were investigated. The hybrid (layered) composites assessed in this study were composed of two layers of different types of cementitious composites. Normal concrete (NC) was used in the top layer combined with a layer of fiber-reinforced cementitious composite (FRCC) reinforced with either the recently developed basalt fiber (BF) pellets (basalt fiber strands encapsulated by a polymeric resin or steel fibers (SF)) that were used at different dosages. The post-cracking behavior in terms of residual strength, residual index, and toughness are presented and discussed. The analysis of results showed the effectiveness of the BF pellets in enhancing the post-cracking behavior of specimens, as they behaved comparably to counterpart specimens comprising SF, which makes them a good candidate for infrastructural applications including rehabilitation such as new bridge girders or overlays.

Author(s):  
Riham Elhadary ◽  
Mohamed T. Bassuoni

High-performance cementitious composites (HPCC) are prominently featured with high tensile ductility and toughness. Slag has been widely used in HPCC; however, HPCC with high volumes of slag has low matrix strength and limited development of micro-structure at early-age. These limitations can be mitigated by incorporating nano-particles (e.g., nano-silica) in the binder. The purpose of this study was to develop nano-modified HPCC with high ductility and matrix quality. A new form of basalt fibers termed basalt fiber pellets (BFP)—basalt fiber strands encapsulated by a polymeric resin—were used at different dosages (2.5% and 4.5% by volume), and in a hybrid system with PVA fibers (1% by volume) to develop in these composites. All composites incorporated a binder consisting of 50% general use cement and 50% slag with the addition of 6% nano-silica. The composites were tested in relation to compressive strength and flexural performance. All the nano-modified composites showed improved performance, especially at early-age, despite the high volume of slag incorporated in the binder. While the compressive strength of the mixtures was reduced with increasing the dosage of BFP, addition of 1% PVA fibers to BFP (hybrid system) enhanced the compressive strength of the composites. In the same context, the flexural performance of the composites comprising hybrid fibers was also improved in relation to flexural strength, post-cracking behavior, residual strength and toughness. Therefore, these composites have a promising potential for infrastructure applications requiring improved strength and ductility.


2021 ◽  
Vol 7 (12) ◽  
pp. 2099-2108
Author(s):  
Qais J. Frayyeh ◽  
Mushtaq H. Kamil

Despite their drastically different chemical ingredients and interactions, geopolymer concrete exhibits many of the same features as ordinary concrete. Among these properties is drying shrinkage. As in normal concrete, dry shrinkage in geopolymer concrete may cause cracking if the geopolymer concrete is bound, which affects the integrity of the structure in the future. It's important to measure drying shrinkage as soon as possible because it's the cause of early age cracking, which happens when the concrete isn't very strong. The purpose of this study is to determine how to reduce the dry shrinkage value of geopolymer concrete by using different types of fibers. Three types of fibers were used to determine their effect on the dry shrinkage of geopolymer concrete when compared with a reference mixture without the fibers. Metakaolin was used as a binder for the concrete geopolymer. As for the fibers, steel, carbon and polypropylene fibers were used in proportions of (0, 0.5, and 1%). The results showed an improvement in dryness shrinkage when adding fibers in general, with a difference in values between the different types of fibers. Steel fibers had the lowest amount of dry shrinkage. The temperature had a direct influence on the decrease in the extent of the shrinking, since the samples handled at higher temperatures had less dryness to begin with. Doi: 10.28991/cej-2021-03091780 Full Text: PDF


2017 ◽  
Vol 5 (4RASM) ◽  
pp. 59-62
Author(s):  
Vishal Gadgihalli ◽  
Meena ◽  
Sindu ◽  
Raghavendra Prasad Dinakar

Fiber reinforced concrete is composite material consisting of mixtures of cement, mortar or concrete, discontinuous discrete uniform dispersed suitable fibers. Fiber reinforced concrete are of different types and properties. In this paper analysis of properties of concrete using steel fibre as fiber reinforcement admixture is studied and verified the strength of concrete to normal plane concrete with absence of admixtures. Using steel fibers as fiber reinforcement admixture increases bond strength by enhancing surface tension as steel is better in taking flexural strength this gives better results, hence we can use this steel fiber reinforcement to concrete where the compressive and flexural strength place a crucial role in construction and maintenance.


2019 ◽  
Vol 5 ◽  
pp. 153-164
Author(s):  
Sagar Bista ◽  
Sagar Airee ◽  
Shikshya Dhital ◽  
Srijan Poudel ◽  
Sujan Neupane

Concrete is weak in tension, hence some measures must be adopted to overcome this deficiency as well as to enhance physical and other mechanical properties but in more convenient and economical method. Through many research from the past, it has been observed that addition of different types of fibres has been more effective for this purpose. This report presents the work undertaken to study the effect of steel and hay fibre on normal cement concrete of M-15 Grade on the basis of its mechanical properties which include compressive and tensile strength test and slump test as well. Although hay fibres are abundantly available in Nepal, no research have been popularly conducted here regarding the use of hay fibres in concrete and the changes brought by it on concrete’s mechanical properties. Experiments were conducted on concrete cubes and cylinders of standard sizes with addition of various percentages of steel and hay fibres i.e. 0.5%, 1% and 1.5% by weight of cement and results were compared with those of normal cement concrete of M-15 Grade. For each percentage of steel and hay fibre added in concrete, six cubes and six cylinders were tested for their respective mechanical properties at curing periods of 14 and 28 days. The results obtained show us that the optimum content of fibre to be added to M-15 grade of concrete is 0.5% steel fibre for compression and 0.5% hay fibre content for tension by weight of cement. Also, addition of steel and hay fibres enhanced the binding properties, micro cracking control and imparted ductility. In addition to this, two residential buildings were modeled in SAP software, one with normal concrete and other with concrete containing 0.5% steel fibre. Difference in reinforcement requirements in each building was computed from SAP analysis and it was found that 489.736 Kg of reinforcement could be substituted by 158.036 kg of steel fibres and decrease in materials cost of building with 0.5% steel fibre reinforced concrete was found to be Rs. 32,100.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2923 ◽  
Author(s):  
Violetta K. Kytinou ◽  
Constantin E. Chalioris ◽  
Chris G. Karayannis ◽  
Anaxagoras Elenas

The use of fibers as mass reinforcement to delay cracking and to improve the strength and the post-cracking performance of reinforced concrete (RC) beams has been well documented. However, issues of common engineering practice about the beneficial effect of steel fibers to the seismic resistance of RC structural members in active earthquake zones have not yet been fully clarified. This study presents an experimental and a numerical approach to the aforementioned question. The hysteretic response of slender and deep steel fiber-reinforced concrete (SFRC) beams reinforced with steel reinforcement is investigated through tests of eleven beams subjected to reversal cyclic loading and numerical analysis using 3D finite element (FE) modeling. The experimental program includes flexural and shear-critical SFRC beams with different ratios of steel reinforcing bars (0.55% and 1.0%), closed stirrups (from 0 to 0.5%), and fibers with content from 0.5 to 3% per volume. The developed nonlinear FE numerical simulation considers well-established relationships for the compression and tensional behavior of SFRC that are based on test results. Specifically, a smeared crack model is proposed for the post-cracking behavior of SFRC under tension, which employs the fracture characteristics of the composite material using stress versus crack width curves with tension softening. Axial tension tests of prismatic SFRC specimens are also included in this study to support the experimental project and to verify the proposed model. Comparing the numerical results with the experimental ones it is revealed that the proposed model is efficient and accurately captures the crucial aspects of the response, such as the SFRC tension softening effect, the load versus deformation cyclic envelope and the influence of the fibers on the overall hysteretic performance. The findings of this study also reveal that SFRC beams showed enhanced cyclic behavior in terms of residual stiffness, load-bearing capacity, deformation, energy dissipation ability and cracking performance, maintaining their integrity through the imposed reversal cyclic tests.


2014 ◽  
Vol 1025-1026 ◽  
pp. 1005-1009 ◽  
Author(s):  
Michaela Kostelecká ◽  
Jiří Kolísko

The ultra high performance concrete (UHPC) has very special properties that are expressively different of normal concrete. Due to its high compression strength greater than 150 MPa, tensile strength greater than 20 MPa and improved durability, these represent significant advances in concrete technology. These materials include Portland cement, silica fume, quartz flour, fine silica sand, high-range water-reducer, water and either steel or organic fibres. Depending on the type of fibres used can influence the compressive strength. The article describes the tests of frost resistance on UHPC plates with different types of textiles armatures. The aim of the testing is describe influence of textiles armatures in UHPC matrix in extreme conditions.


2014 ◽  
Vol 67 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Dimas Alan Strauss Rambo ◽  
Flávio de Andrade Silva ◽  
Romildo Dias Toledo Filho

The simultaneous use of different types of fibers as reinforcement in concrete, mortar or pastes, can avoid the propagation and widening of cracks at different stages of their load-deflection or stress-strain behavior. The purpose of this article is to evaluate the flexural behavior in the material and structural scale of self-compacting concretes reinforced with meso and macro steel fibers. Two tests were used to mechanically characterize the concretes reinforced with volume fractions of 1 and 1.5% hybrid steel fibers: four point bending tests (material scale) and round panel tests (structural scale). The results indicated that hybridization of fiber reinforcement raised the serviceability limit state of concrete, contributing to increased toughness and load bearing capacity for small levels of displacement and crack openings. Such benefits were more evident in the structural tests considering the degree of hyperstaticity and multiple cracking potential of the panels. In the descending branch of the load-displacement curves, where macro-cracks were predominant, macro-fibers were more efficient in increasing the overall capacity for energy absorption of the composites.


Sign in / Sign up

Export Citation Format

Share Document