scholarly journals The Oxidation of Copper in Air at Temperatures up to 100 °C

2021 ◽  
Vol 2 (4) ◽  
pp. 625-640
Author(s):  
Jari Aromaa ◽  
Marko Kekkonen ◽  
Mehrdad Mousapour ◽  
Ari Jokilaakso ◽  
Mari Lundström

The aim of this study was to investigate the oxidation kinetics of copper at low temperatures (60 °C to 100 °C) in air by isothermal thermogravimetric analysis (TGA) and quartz crystal microbalance (QCM). The weight change in thermogravimetric tests showed periodic weight increase and decrease. In thermogravimetric tests the mass of the copper sample increased until the oxidation gradually slowed down and finally started to decrease due to cracking and spalling of the oxide formed on the surface. In QCM tests using electrodeposited copper film, the weight change was rapid at the beginning but slowed to a linear relationship after few minutes. Temperature and exposure time appeared to have a large effect on oxide film thickness and composition. With QCM, oxidation at 60–80 °C produced less than 40 nm films in 10 days. Oxidation at 90–100 °C produced 40 nm thick films in a day and over 100 nm films in a week. Although SEM-EDS analyses in TGA tests indicated that oxygen was adsorbed on the copper surface, neither XRD patterns nor Raman spectroscopy measurements showed any trace of Cu2O or CuO formation on the copper surface. Electrochemical reduction analysis of oxidized massive copper samples indicated that the oxide film is mostly Cu2O, and CuO develops only after several days at 90–100 °C.

2021 ◽  
Vol 118 (21) ◽  
pp. 212101
Author(s):  
Alena Nikolskaya ◽  
Alexey Belov ◽  
Alexey Mikhaylov ◽  
Anton Konakov ◽  
David Tetelbaum ◽  
...  

1991 ◽  
Vol 226 ◽  
Author(s):  
Hideo Miura ◽  
Hiroshi Sakata ◽  
Shinji Sakata Merl

AbstractThe residual stress in silicon substrates after local thermal oxidation is discussed experimentally using microscopic Raman spectroscopy. The stress distribution in the silicon substrate is determined by three main factors: volume expansion of newly grown silicon–dioxide, deflection of the silicon–nitride film used as an oxidation barrier, and mismatch in thermal expansion coefficients between silicon and silicon dioxide.Tensile stress increases with the increase of oxide film thickness near the surface of the silicon substrate under the oxide film without nitride film on it. The tensile stress is sometimes more than 100 MPa. On the other hand, a complicated stress change is observed near the surface of the silicon substrate under the nitride film. The tensile stress increases initially, as it does in the area without nitride film on it. However, it decreases with the increase of oxide film thickness, then the compressive stress increases in the area up to 170 MPa. This stress change is explained by considering the drastic structural change of the oxide film under the nitride film edge during oxidation.


2001 ◽  
Vol 105 (33) ◽  
pp. 7979-7983 ◽  
Author(s):  
Petr Krtil ◽  
Antonín Trojánek ◽  
Zdeněk Samec

1996 ◽  
Vol 45 (10) ◽  
pp. 609-613
Author(s):  
Reiko Shiozawa ◽  
Kyoichi Oki ◽  
Susumu Arai

2000 ◽  
Vol 07 (01n02) ◽  
pp. 135-139 ◽  
Author(s):  
V. P. ZHDANOV ◽  
P. R. NORTON

A seminal model describing the kinetics of growth of thin oxide films on metal crystals was proposed by Cabrera and Mott (CM). The model is based on the assumption that the growth is limited by the field-facilitated activated jumps of metal ions located in steps on the metal–oxide interface. We generalize the CM model by (i) exploring the interplay of jumps of metal ions from the step and terrace sites at the metal–oxide interface, and (ii) scrutinizing the processes at the oxide–gas-phase interface. The former factor is found to change the physical meaning of the parameters in the CM growth law. The latter factor results in modification of the growth law. In particular, the oxidation kinetics becomes dependent on the O2 pressure. More specifically, the oxidation rate is predicted to increase with increasing pressure. This effect is, however, rather weak and becomes progressively weaker with increasing oxide film thickness.


1999 ◽  
Vol 06 (06) ◽  
pp. 1053-1060 ◽  
Author(s):  
N. TABET ◽  
J. AL-SADAH ◽  
M. SALIM

X-ray Photoelectron Spectroscopy (XPS) has been used to investigate the oxidation of (011) Ge substrates. The sample surfaces were CP4-etched, then annealed in situ, at different temperatures, for various durations. Dry and wet atmospheres were used. The oxidation rate during the early stage was increased by the presence of moisture in the atmosphere. A simple model was used to define and determine an apparent thickness of the oxide film from XPS measurements. The time dependence of the apparent thickness is consistent with a partial coverage of the surface by oxide islands. The growth kinetics of the oxide islands obeys a nearly cubic law.


2014 ◽  
Vol 11 (2) ◽  
pp. 690-694
Author(s):  
Baghdad Science Journal

Films of silver oxide of different thickness have been prepared by the chemical spray paralysis. Transmission and absorption spectra have recorded in order to study the effect of increasing thickness on some optical parameter such as reflectance, refractive index , and dielectric constant in its two parts . This study reveals that all these paramters affect by increasing the thickness .


Sign in / Sign up

Export Citation Format

Share Document