scholarly journals Synthesis and Characterization of Efficient ZnO/g-C3N4 Nanocomposites Photocatalyst for Photocatalytic Degradation of Methylene Blue

Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 500 ◽  
Author(s):  
Renathung C. Ngullie ◽  
Saleh O. Alaswad ◽  
Kandasamy Bhuvaneswari ◽  
Paramasivam Shanmugam ◽  
Thangavelu Pazhanivel ◽  
...  

We examine the photocatalytic activity (PCA) of ZnO/graphitic carbon nitride g-C3N4 (g-CN) composite material for methylene blue (MB) degradation under visible-light irradiation (VLI). The polymeric g-CN materials were fabricated by the pyrolysis of urea and thiourea. More importantly, ZnO/g-CN nanostructured composites were fabricated by adding the different mounts (60, 65, 70, and 75 wt.%) of g-CN into ZnO via the simple hydrothermal process. Among fabricated composites, the 75% ZnO/g-CN nanocomposites displayed a superior PCA for MB degradation, which were ~three-fold an enhancement over the pure ZnO nanoparticles. The fabricated materials have been evaluated by X-ray diffraction (XRD), UV-Vis, Fourier transform infrared (FT-IR) spectroscopy, and electron microscopy. More importantly, the photodegradation of MB could get 98% in ZnO/g-CN could be credited to efficient separation of photo-induced charge carriers between ZnO and g-CN. Also, the recycling efficiency of the as-prepared composites was studied for multiple cycles, which shows that the photocatalysts are stable and suitable to carry out photocatalytic degradation in the logistic mode. Additionally, the probable photocatalytic mechanism has also discussed. The synthetic procedure of ZnO/g-CN based materials can be used in numerous fields such as environmental and in energy storage applications.

2020 ◽  
Vol 32 (6) ◽  
pp. 1505-1510
Author(s):  
Ahmad Husain ◽  
Mohd Urooj Shariq ◽  
Anees Ahmad

In present study, the synthesis and characterization of a novel polypyrrole (PPy)/tin oxide (SnO2)/MWCNT nanocomposite along with pristine polypyrrole is reported. These materials have been studied for their structural and morphological properties by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. PPy/SnO2/MWCNT nanocomposite has been converted into a pellet-shaped sensor, and its ammonia sensing studies were carried out by calculating the variation in the DC electrical conductivity at different concentration of ammonia ranging from 10 to 1500 ppm. The sensing response of the sensor was determined at 1500, 1000, 500, 200, 100 and 10 ppm and found to be 70.4, 66.1, 62.2, 55.4, 50.8 and 39.7%, respectively The sensor showed a complete reversibility at lower concentrations along with excellent selectivity and stability. Finally, a sensing mechanism was also proposed involving polarons (charge carriers) of polypyrrole and lone pairs of ammonia molecules


2020 ◽  
Vol 32 (8) ◽  
pp. 1961-1966
Author(s):  
Ahmad Husain ◽  
Mohd Urooj Shariq ◽  
Sharique Ahmad ◽  
Anees Ahmad ◽  
Faiz Mohammad

Herein, the synthesis and characterization of a novel polypyrrole (PPy)/zinc oxide (ZnO)/SWCNT nanocomposite together with pristine polypyrrole is reported. These as-prepared materials have been characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) techniques. The PPy/ ZnO/SWCNT nanocomposite is used as a pellet-shaped ammonia sensor. The sensing response is calculated in terms of variation in the DC electrical conductivity at different concentration of ammonia ranging from 50 ppm to 2000 ppm. The sensing response of the sensor is determined at 2000, 1000, 500, 400, 300, 200, 100 and 50 ppm and found to be 76.3, 60.5, 54.8, 52.6, 50.2, 48.5, 40.5 and 36.6%, respectively The sensor displays excellent reversibility along with very high selectivity and stability. Finally, a sensing mechanism is also proposed involving polarons (charge carriers) of polypyrrole and lone pairs of electrons of ammonia molecules.


2012 ◽  
Vol 560-561 ◽  
pp. 434-437 ◽  
Author(s):  
Lan Wang ◽  
Wen Ji Guo ◽  
Yan Zhao Zhao

The objective of this paper was to prepare the composite of crefradine/montmorillionite in the method of solution intercalation. The drug load and intercalation rate varied with the drug concentration. X-ray diffraction (XRD), Fourier transformed infrared (FT-IR) Spectroscopy, and thermal analysis (TG-DSC) were applied to characterize composite mentioned above. Together with drug release tests, results indicate cefradine intercalated into montmorillionite.The release profiles of cefradine/MMT in simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 7.4) at 37°Cduring 10h are shown in Fig. 4. The amount of cefradine in the beginning 2h came up to 35% and 50%, and in the following time, cefradine released slowly. The release behaviors met the requirements of sustained release.


2019 ◽  
Vol 31 (8) ◽  
pp. 1779-1784
Author(s):  
V. Mohanraj ◽  
R. Pavithra ◽  
M. Thenmozhi ◽  
R. Umarani

Phenyl trimethylammonium tetrachlorocobaltate, crystals were grown by slow evaporation technique. The crystal was bright, transparent. The three dimensional structure of the phenyl trimethylammonium tetrachlorocobaltate was obtained from single crystal X-ray diffraction studies. The molecule belongs to monoclinic crystal system with C2/c space group. The presence of functional groups and modes of vibrations were identified by FT-IR spectroscopy. 1H NMR spectroscopy was also used to characterise the compound and the thermal stability of the crystal was established by TGA/DT analysis. This work undergoes phase transition which makes the study interesting.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
K. Rajesh ◽  
B. Milton Boaz ◽  
P. Praveen Kumar

Single crystals of pure and Lanthanum doped L-Alanine Tartrate were grown by slow evaporation method. The cell parameters were determined using single crystal X-ray diffraction method. To improve the physical properties of the LAT crystal, Lanthanum dopant was added by 2 mol%. ICP studies confirm the presence of Lanthanum in the grown LAT crystal. Transparency range of the crystal was determined using UV-VIS-NIR spectrophotometer. The functional groups of pure and doped LAT crystals were analyzed by FT-IR spectroscopy. Using Vickers microhardness tester, mechanical strength of the material was found. Dielectric studies of pure and doped LAT single crystals were carried out. The doped LAT crystal is found to have efficiency higher than that of pure LAT crystal.


2013 ◽  
Vol 32 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Mahdiyeh Esmaeili-Zare ◽  
Masoud Salavati-Niasari ◽  
Davood Ghanbari

AbstractMercury selenide nanostructures were synthesized from the reaction of N, N′-bis(salicylidene)propane-1,3-diamine mercury complex, (Hg(Salpn)) as a novel precursor, via sonochemical method. The effect of different surfactant on the morphology and particle size of the products was investigated. Products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray energy dispersive spectroscopy (EDS).


Author(s):  
Khalil Faghihi ◽  
Mostafa Ashouri ◽  
Akram Feyzi

<p>A series of nanocomposites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt%, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nanocomposite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane (APB) and 3،3΄،4،4΄-benzophenone tetra carboxylic dianhydride (BTDA) in N,N-dimethylacetamide (DMAc). The resulting nanocomposite films were characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA).</p>


2019 ◽  
Vol 9 (4) ◽  
pp. 317-325
Author(s):  
Ikram Chaer ◽  
Asmae El Cadi ◽  
Jamal Brigui ◽  
Khadija Ziat ◽  
Mohamed Khaddor

In recent decades, landfill sites have been a potential source of contamination, which can hurt the environment due to the accumulation of heavy metals and processed organic products. In the Tangier landfill, the different types of wastes are missing any prior treatment or any soil of protection. This behavior constitutes a risk factor of contamination for the soil and groundwater. Between the waste and soil, many physicochemical and biological reactions occur. The objective of this work effort is to derive a global and in-depth characterization of the organic and mineral matter of the soil samples from the Tangier landfill. The study of organic matter (OM) in soils helps to understand the evolution of soil contamination. Eight samples of soil have been studied using a range of chemical and physical analytical methods. FT-IR spectroscopy and X-ray diffraction analyses have used to investigate the nature of organic matter. The analysis of heavy metals in the soil showed that there is a significant presence of Pb, Cd, As, Cr and Zn quantities which are mainly due to industrial waste.


2016 ◽  
Vol 25 (6) ◽  
pp. 096369351602500 ◽  
Author(s):  
Ruimin Fu ◽  
Mingfu Zhu

Nowadays, the hummers method for preparation of graphene oxide (GO) was improved. The grapheme oxide @ Fe3O4 magnetic nanocomposites were synthesized by co-precipitation method. After analysing the morphology and structure of obtained nanocomposites by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared (FT-IR) spectroscopy, the result was shown as follows. The particle size of Fe3O4 in nanocomposites is 30 nm. Many functional groups are found in grapheme oxide, and such groups could be used to bind with the drug. In the test for magnetic properties, the nanocomposites gathered rapidly in the vicinity of the permanent magnet. The nanocomposites, with high superparamagnetism, can be used in the following applications: drug targeting transports, drug carrier, and diagnosis assistant system.


Sign in / Sign up

Export Citation Format

Share Document