scholarly journals Effect of Substrate Holder Design on Stress and Uniformity of Large-Area Polycrystalline Diamond Films Grown by Microwave Plasma-Assisted CVD

Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 939
Author(s):  
Vadim Sedov ◽  
Artem Martyanov ◽  
Alexandr Altakhov ◽  
Alexey Popovich ◽  
Mikhail Shevchenko ◽  
...  

In this work, the substrate holders of three principal geometries (flat, pocket, and pedestal) were designed based on E-field simulations. They were fabricated and then tested in microwave plasma-assisted chemical vapor deposition process with the purpose of the homogeneous growth of 100-μm-thick, low-stress polycrystalline diamond film over 2-inch Si substrates with a thickness of 0.35 mm. The effectiveness of each holder design was estimated by the criteria of the PCD film quality, its homogeneity, stress, and the curvature of the resulting “diamond-on-Si” plates. The structure and phase composition of the synthesized samples were studied with scanning electron microscopy and Raman spectroscopy, the curvature was measured using white light interferometry, and the thermal conductivity was measured using the laser flash technique. The proposed pedestal design of the substrate holder could reduce the stress of the thick PCD film down to 1.1–1.4 GPa, which resulted in an extremely low value of displacement for the resulting “diamond-on-Si” plate of Δh = 50 μm. The obtained results may be used for the improvement of already existing, and the design of the novel-type, MPCVD reactors aimed at the growth of large-area thick homogeneous PCD layers and plates for electronic applications.

1995 ◽  
Vol 416 ◽  
Author(s):  
S. Nijhawan ◽  
S. M. Jankovsky ◽  
B. W. Sheldon

ABSTRACTThe role of intrinsic stresses in diamond films is examined. The films were deposited on (100) Si substrates by microwave plasma-enhanced chemical vapor deposition. The total internal stresses (thermal and intrinsic) were measured at room temperature with the bending plate method. The thermal stresses are compressive and arise due to the mismatch in thermal expansion coefficient of film and substrate. The intinsic stresses were tensile and evolved during the deposition process. These stresses increased with increasing deposition time. A 12 hour intermediate annealing treatment was found to reduce the tensile stresses considerably. The annealing treatment is most effective when the diamond crystallites are undergoing impingement and coalescence. This is consistent with the theory that the maximum tensile stresses are associated with grain boundary energetics.


Author(s):  
A. Duarte Moller ◽  
L. Cota Araiza ◽  
M. Avalos Borja

In this work, we report the EXELFS results obtained from a polycrystalline diamond film grown on smooth silicon substrates using the Hot Filament Chemical Vapor Deposition (HF-CVD) technique in a two-step deposition process published elsewhere. In order to evaluate the quality of the thin film obtained, these results were compared with results obtained from natural diamond. The diamond sample was prepared in cross-section by ion milling where the nominal size of diamond.particles was about 1 μn. The EXELFS experiments were performed in a JEOL-2010 Transmission Electron Microscope with a GATAN-666 PEELS attachment. A primary energy of 200 KeV was used with an average acquisition time of 5 minutes. The extended fine structure (EFS) energy range was 300 eV. In order to obtain the local structure, the standard procedure developed for EXAFS was applied here. The natural diamond particles with a nominal size of 1 μn were taken from commercial powder.


1992 ◽  
Vol 242 ◽  
Author(s):  
R. W. Pryor ◽  
M. W. Geis ◽  
H. R. Clark

ABSTRACTA new technique has been developed to grow semiconductor grade diamond substrates with dimensions comparable to those of currently available Si wafers. Previously, the synthetic single crystal diamond that could be grown measured only a few millimeters across, compared with single crystal Si substrates which typically are 10 to 15 cm in diameter. In the technique described, an array of features is first etched in a Si substrate. The shape of the features matches that of inexpensive, synthetic faceted diamond seeds. A diamond mosaic is then formed by allowing the diamond seeds to settle out of a slurry onto the substrate, where they become fixed and oriented in the etched features. For the experiments reported, the mosaic consists of seeds ∼ 100 μm across on 100 μm centers. A mosaic film is obtained by chemical vapor deposition of homoepitaxial diamond until the individual seeds grow together. Although these films contain low angle (<1°) grain boundaries, smooth, continuous diamond films have been obtained with electronic properties substantially better than those of polycrystalline diamond films and equivalent to those of homoepitaxial single crystal diamond films. The influence of growth conditions and seeding procedures on the crystallographic and electronic properties of these mosaic diamond films is discussed.


2013 ◽  
Vol 1538 ◽  
pp. 275-280
Author(s):  
S.L. Rugen-Hankey ◽  
V. Barrioz ◽  
A. J. Clayton ◽  
G. Kartopu ◽  
S.J.C. Irvine ◽  
...  

ABSTRACTThin film deposition process and integrated scribing technologies are key to forming large area Cadmium Telluride (CdTe) modules. In this paper, baseline Cd1-xZnxS/CdTe solar cells were deposited by atmospheric-pressure metal organic chemical vapor deposition (AP-MOCVD) onto commercially available ITO coated boro-aluminosilicate glass substrates. Thermally evaporated gold contacts were compared with a screen printed stack of carbon/silver back contacts in order to move towards large area modules. P2 laser scribing parameters have been reported along with a comparison of mechanical and laser scribing process for the scribe lines, using a UV Nd:YAG laser at 355 nm and 532 nm fiber laser.


2008 ◽  
Vol 17 (4-5) ◽  
pp. 520-524 ◽  
Author(s):  
D. King ◽  
M.K. Yaran ◽  
T. Schuelke ◽  
T.A. Grotjohn ◽  
D.K. Reinhard ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1199
Author(s):  
Mariusz Dudek ◽  
Adam Rosowski ◽  
Marcin Kozanecki ◽  
Malwina Jaszczak ◽  
Witold Szymański ◽  
...  

Different microstructures were created on the surface of a polycrystalline diamond plate (obtained by microwave plasma-enhanced chemical vapor deposition—MW PECVD process) by use of a nanosecond pulsed DPSS (diode pumped solid state) laser with a 355 nm wavelength and a galvanometer scanning system. Different average powers (5 to 11 W), scanning speeds (50 to 400 mm/s) and scan line spacings (“hatch spacing”) (5 to 20 µm) were applied. The microstructures were then examined using scanning electron microscopy, confocal microscopy and Raman spectroscopy techniques. Microstructures exhibiting excellent geometry were obtained. The precise geometries of the microstructures, exhibiting good perpendicularity, deep channels and smooth surfaces show that the laser microprocessing can be applied in manufacturing diamond microfluidic devices. Raman spectra show small differences depending on the process parameters used. In some cases, the diamond band (at 1332 cm−1) after laser modification of material is only slightly wider and shifted, but with no additional peaks, indicating that the diamond is almost not changed after laser interaction. Some parameters did show that the modification of material had occurred and additional peaks in Raman spectra (typical for low-quality chemical vapor deposition CVD diamond) appeared, indicating the growing disorder of material or manufacturing of the new carbon phase.


2018 ◽  
Vol 281 ◽  
pp. 893-899 ◽  
Author(s):  
Yi Fan Xi ◽  
Jian Huang ◽  
Ke Tang ◽  
Xin Yu Zhou ◽  
Bing Ren ◽  
...  

In this study, we propose a simple and effective approach to enhance (110) orientation in diamond films grown on (100) Si substrates by microwave plasma chemical vapor deposition. It is found that the crystalline structure of diamond films strongly rely on the CH4 concentration in the nucleation stage. Under the same growth condition, when the CH4 concentration is less than 7% (7%) in the nucleation stage, the diamond films exhibit randomly oriented structure; once the value exceeds 7%, the deposited films are strongly (110) oriented. It could be verified by experiments that the formation of (110) orientation in diamond films are related to the high nucleation density and high fraction of diamond-like carbon existing in nucleation samples.


1991 ◽  
Vol 6 (6) ◽  
pp. 1278-1286 ◽  
Author(s):  
R. Ramesham ◽  
T. Roppel ◽  
C. Ellis ◽  
D.A. Jaworske ◽  
W. Baugh

Polycrystalline diamond thin films have been deposited on single crystal silicon substrates at low temperatures (⋚ 600 °C) using a mixture of hydrogen and methane gases by high pressure microwave plasma-assisted chemical vapor deposition. Low temperature deposition has been achieved by cooling the substrate holder with nitrogen gas. For deposition at reduced substrate temperature, it has been found that nucleation of diamond will not occur unless the methane/hydrogen ratio is increased significantly from its value at higher substrate temperature. Selective deposition of polycrystalline diamond thin films has been achieved at 600 °C. Decrease in the diamond particle size and growth rate and an increase in surface smoothness have been observed with decreasing substrate temperature during the growth of thin films. As-deposited films are identified by Raman spectroscopy, and the morphology is analyzed by scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document