scholarly journals Thermal Stability of MoNbTaVW High Entropy Alloy Thin Films

Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 941
Author(s):  
Ao Xia ◽  
Robert Franz

Refractory high entropy alloys are an interesting material class because of their high thermal stability, decent electrical conductivity, and promising mechanical properties at elevated temperature. In the present work, we report on the thermal stability of body-centered cubic MoNbTaVW solid solution thin films that were synthesized by cathodic arc deposition. After vacuum annealing up to 1600 °C, the morphology, chemical composition, crystal structure, and electrical conductivity, as well as the mechanical properties, were analyzed. The observed body-centered cubic MoNbTaVW solid solution phase is stable up to 1500 °C. The evolution of electrical and mechanical properties due to the annealing treatment is discussed based on the observed structural changes of the synthesized thin films.

2010 ◽  
Vol 204 (12-13) ◽  
pp. 1989-1992 ◽  
Author(s):  
V. Dolique ◽  
A.-L. Thomann ◽  
P. Brault ◽  
Y. Tessier ◽  
P. Gillon

Author(s):  
Hamed Naser-Zoshki ◽  
Ali-Reza Kiani-Rashid ◽  
Jalil Vahdati-Khaki

In this work, non-equiatomic W10Mo27Cr21Ti22Al20 refractory high-entropy alloy (RHEA) was produced using mechanical alloying followed by spark plasma sintering. The phase formation, microstructure, and compressive mechanical properties of the alloy were studied. During mechanical alloying, a Body-centered cubic (BCC) solid solution phase with a particle size of less than 1 µm was obtained after 18 h ball milling. The microstructure of the sintered sample exhibits three distinct phases consisting of two solid solution phases BCC1 and BCC2 as well as fine TiCxOy precipitates distributed in them. The volume fractions of each phase were about 79%, 8%, and 13%, respectively. The sintered W10Mo27Cr21Ti22Al20 showed yield strengths of 2465, 1506, 405, and 290 MPa at room temperature 600, 1000, and 1200°C, respectively, which are about twice that of the same refractory high-entropy alloy produced by vacuum arc melting. At 1000 and 1200°C, the strength after yielding gradually increased to 970 and 718 MPa at a compressive strain of 60%. The studied refractory high-entropy alloy can have good potential in high-temperature applications due to its high specific strength at elevated temperatures compared to conventional Ni-based superalloys and most as-reported refractory high-entropy alloys.


2020 ◽  
Vol 838 ◽  
pp. 155580
Author(s):  
Felipe Cemin ◽  
Mawin J.M. Jimenez ◽  
Leonardo M. Leidens ◽  
Carlos A. Figueroa ◽  
Fernando Alvarez

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


Sign in / Sign up

Export Citation Format

Share Document