scholarly journals Microstructure and Wear Behavior of Plasma-Sprayed TiO2–SiAlON Ceramic Coating

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1268
Author(s):  
Yun Wang ◽  
Weichao Wan ◽  
Junhong Mao ◽  
Lihui Tian ◽  
Ruitao Li

In this study, atmospheric plasma spray was employed to deposit TiO2–SiAlON ceramic coating on 316 stainless steel. The phases and microstructure of the ceramic coating were investigated. Additionally, comparative studies on the tribological performances of the substrate and the ceramic coating, under both dry and starved lubrication conditions, were carried out. The SiAlON phase was preserved, while partial TiO2 anatase was transformed to rutile phase. The wear rate of the coating was roughly 1/3 of that of the substrate under both conditions. The wear mechanisms of the ceramic coating were surface fracture and abrasive wear in both cases, and the coating under starved lubrication underwent less abrasion. The pores in the coating served as micro-reservoirs, forming an oil layer on the mating surface, and improving tribological properties during sliding.

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 879
Author(s):  
Monika Michalak ◽  
Paweł Sokołowski ◽  
Mirosław Szala ◽  
Mariusz Walczak ◽  
Leszek Łatka ◽  
...  

Thermally sprayed ceramic coatings are applied for the protection of surfaces that are exposed mainly to wear, high temperatures, and corrosion. In recent years, great interest has been garnered by spray processes with submicrometric and nanometric feedstock materials, due to the refinement of the structure and improved coating properties. This paper compares the microstructure and tribological properties of alumina coatings sprayed using conventional atmospheric plasma spraying (APS), and various methods that use finely grained suspension feedstocks, namely, suspension plasma spraying (SPS) and suspension high-velocity oxy-fuel spraying (S-HVOF). Furthermore, the suspension plasma-sprayed Al2O3 coatings have been deposited with radial (SPS) and axial (A-SPS) feedstock injection. The results showed that all suspension-based coatings demonstrated much better wear resistance than the powder-sprayed ones. S-HVOF and axial suspension plasma spraying (A-SPS) allowed for the deposition of the most dense and homogeneous coatings. Dense-structured coatings with low porosity (4 vol.%) and good cohesion to the metallic substrate, containing a high content of α–Al2O3 phase (56 vol.%) and a very low wear rate (0.2 ± 0.04 mm3 × 10−6/(N∙m)), were produced with the S-HVOF method. The wear mechanism of ceramic coatings included the adhesive wear mode supported by the fatigue-induced material delamination. Moreover, the presence of wear debris and tribofilm was confirmed. Finally, the coefficient of friction for the coatings was in the range between 0.44 and 0.68, with the highest values being recorded for APS sprayed coatings.


Author(s):  
Gagandeep Singh ◽  
Manpreet Kaur

Knowledge and optimization of tribological behavior of hot forming dies play an important role in attaining high process productivity. But research in this field has been limited. Keeping this in view, the current investigation aims to explore the potential of atmospheric plasma sprayed (APS) 65% (NiCrSiFeBC)–35% (WC–Co) coating in optimizing friction coefficients and minimizing the wear of AISI H11 and AISI H13 hot forming steels at elevated temperatures. Detailed characterization of the as-sprayed specimens was carried out using scanning electron microscopy/energy-dispersive spectroscopy and X-ray diffraction techniques. Wear and friction tests were done utilizing a high-temperature pin-on-disc tribometer under two different loads and temperatures ranging from room temperature to 800 ℃. The results have shown that the developed coating exhibited lower porosity, higher microhardness, and performed much better than the uncoated specimens. The wear mechanisms of the coated specimens were mainly abrasive at room temperatures and 400 ℃. Fatigue, tribo-oxidation, and three-body abrasion were observed as the dominant mechanisms at 800 ℃.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 474
Author(s):  
Fuzhu Li ◽  
Shengnan Sun ◽  
Yong Xu ◽  
Lihui Tian ◽  
Yun Wang ◽  
...  

MoAlB ceramic coatings were prepared on a 316 steel surface by atmospheric plasma spraying with different arc power levels. The phase composition, microstructure and wear resistance of coatings against GCr15 and Si3N4 counterparts were studied. The MoAlB ceramic decomposed and was oxidized to form MoB and Al2O3 during plasma spraying. With the increase of the arc power, MoAlB experienced more decomposition, but the coatings became denser. When the arc power increased from 30 to 36 kW, the wear rates of coatings against GCr15 and Si3N4 balls reduced by 91% and 78%, respectively. The characterization of wear tracks shows that when against GCr15 counterparts, the main wear mechanisms are abrasive and adhesive wear, and when against Si3N4 counterparts, fatigue and abrasive wear are dominant. The refinement of wear resistance by increasing arc power can be attributed to the improvement of density and adhesive strength among splats.


2016 ◽  
Vol 254 ◽  
pp. 71-76 ◽  
Author(s):  
Norbert Kazamer ◽  
Dragos Toader Pascal ◽  
Gabriela Marginean ◽  
Viorel Aurel Şerban ◽  
Cosmin Codrean ◽  
...  

In order to be competitive, it is demanded to have thin, tough and long lasting coatings. An important aspect is to use stable deposition technologies. As Cr assures wear, corrosion and high temperature resistance, the most employed coatings in industry generally contain Cr. Nevertheless, Cr is a hazardous element for the humans’ health, therefore, sustainable alternatives are needed to be implemented. The aim of this work is to investigate the microstructure, hardness, corrosion resistance and wear behavior of the novel WC-CoMo compared to conventional WC-Co coatings. So far, WC-CoMo coatings are not part of state of the art regarding the Atmospheric Plasma Sprayed (APS) coatings. WC-Co powder in plain form and mechanically mixed with Mo was deposited using the APS method on standardized Type A Almen Strips (C67 steel). The size of the powder grains varies between 5 µm and 30 µm. The obtained samples were investigated by means of Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, X-Ray Diffraction, and hardness, wear and corrosion behavior were also evaluated. Results revealed formation of different intermetallic phases around the WC particles, which have a benefic influence on the coating characteristics and microstructure.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 170
Author(s):  
Songqiang Huang ◽  
Jingzhong Zhou ◽  
Kuoteng Sun ◽  
Hailiang Yang ◽  
Weichen Cai ◽  
...  

Nickel-based alloys are commonly used as protective coating materials for surface protection applications owing to their superior resistance to corrosion, wear and high-temperature oxidation. It is urgent to study the fundamental mechanism between the structure and corrosion properties of the Nickel-base composite coatings. This paper, therefore, focuses on clarifying the mechanisms of the microstructure influencing the acid corrosion and mechanical characteristics of the as-sprayed NiCrBSi coating and post-heat-treated coating. The formation mechanisms of the amorphous phase of flat particles during the plasma spray process were studied by using X-ray diffraction analysis, Raman spectroscopy and confocal laser scanning microscope at first. Then the evolutionary process of the corrosion structure and phase of the coating in the accelerated corrosion experiment is directly visualized by using scanning electron microscopy and energy spectrum analysis. The mechanical properties of the amorphous NiCrBSi coatings are lastly measured by microhardness and friction wear tests. The critical phenomena and results help to elucidate the relative influence of the surface features of atmospheric plasma sprayed coatings on acid corrosion responses and wear resistance, aiming at contributing to the development of a protective technique for electrical engineering.


Sign in / Sign up

Export Citation Format

Share Document