scholarly journals Effects of O2 Plasma Treatments on the Photolithographic Patterning of PEDOT:PSS

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Deng-Yun Zheng ◽  
Meng-Hsiang Chang ◽  
Ci-Ling Pan ◽  
Masahito Oh-e

Poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is known for its potential to replace indium–tin oxide in various devices. Herein, when fabricating finger-type PEDOT:PSS electrodes using conventional photolithography, the cross-sectional profiles of the patterns are U-shaped instead of rectangular. The films initially suffer from non-uniformity and fragility as well as defects owing to undesirable patterns. Adding a small amount of hydrolyzed silane crosslinker to PEDOT:PSS suspensions increases the mechanical durability of PEDOT:PSS patterns while lifting off the photoresist. To further improve their microfabrication, we observe the effects of two additional oxygen (O2) plasma treatments on conventional photolithography processes for patterning PEDOT:PSS, expecting to observe how O2 plasma increases the uniformity of the patterns and changes the thickness and U-shaped cross-sectional profiles of the patterns. Appropriately exposing the patterned photoresist to O2 plasma before spin-coating PEDOT:PSS improves the wettability of its surface, including its sidewalls, and a similar treatment before lifting off the photoresist helps partially remove the spin-coated PEDOT:PSS that impedes the lift-off process. These two additional processes enable fabricating more uniform, defect-free PEDOT:PSS patterns. Both increasing the wettability of the photoresist patters before spin-coating PEDOT:PSS and reducing its conformal coverage are key to improving the photolithographic microfabrication of PEDOT:PSS.

2013 ◽  
Vol 275 ◽  
pp. 273-277 ◽  
Author(s):  
A. Gómez ◽  
H. Martínez ◽  
M. Calixto-Rodríguez ◽  
D. Avellaneda ◽  
P.G. Reyes ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 565 ◽  
Author(s):  
Beata Jewłoszewicz ◽  
Krzysztof A. Bogdanowicz ◽  
Wojciech Przybył ◽  
Agnieszka Iwan ◽  
Ireneusz Plebankiewicz

Poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS) water and toluene solutions were investigated in detail, taking into consideration their stability, wettability, transparency, and electrochemical properties, along with change polarity caused by dopant. As dopant, methanol, ethanol, and isopropanol were used with different dipole moments (1.70, 1.69, and 1.66 D) and dielectric constants (33.0, 24.5, and 18.0). Three techniques, i.e., spin coating, doctor blade coating, and spray coating, were employed to created PEDOT:PSS layers on glass, glass/indium tin oxide (ITO), and glass/fluorine-doped tin oxide (FTO) substrates with optimized technical parameters for each used equipment. All used PEDOT:PSS water and toluene solutions demonstrated good wetting properties with angles below 30° for all used surfaces. Values of the energy bandgap (Eg) of PEDOT:PSS investigated by cyclic voltammetry (CV) in solution showed increase energy Eg along with addition of alcohol to the mixture, and they were found in the range of 1.20 eV to 2.85 eV. The opposite tendency was found for the Eg value of the PEDOT:PSS layer created from water solution. The storage effect on PEDOT:PSS layers detected by CV affected only the lowest unoccupied molecular orbital (LUMO) level, thereby causing changes in the energy bandgap. Finally, simple devices were constructed and investigated by infrared (IR) thermographic camera to investigate the surface defects on the created PEDOT:PSS layers. Our study showed that a more stable PEDOT:PSS layer without pin-holes and defects can be obtained from water and toluene solutions with isopropanol via the spin coating technique with an optimal speed of 3000 rpm and time of 90 s.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1641 ◽  
Author(s):  
Maksym Stetsenko ◽  
Salvatore A. Pullano ◽  
Tetiana Margitych ◽  
Lidia Maksimenko ◽  
Ali Hassan ◽  
...  

A straightforward and effective spin-coating technique at 120 °C was investigated for the deposition of a thin nanoporous layer with antireflection properties onto glass and indium tin oxide (ITO) coated glass. A mixture of zeolite 3A powder and high iodine value vegetable oil was deposited, creating a carbonic paste with embedded nanoporous grains. Experimental results evidenced excellent broadband antireflection over the visible-near-infrared wavelength range (450–850 nm), with a diffuse reflectance value of 1.67% and 1.79%. Structural and optical characteristics stabilized over time. The results are promising for the accessible and cost-effective fabrication of an antireflective surface for optoelectronic devices.


Micron ◽  
2005 ◽  
Vol 36 (3) ◽  
pp. 281-284 ◽  
Author(s):  
Li Zilan ◽  
Hu Xiaodong ◽  
Chen Ke ◽  
Nie Ruijuan ◽  
Luo Xuhui ◽  
...  
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
D. S. C. Halin ◽  
I. A. Talib ◽  
A. R. Daud ◽  
M. A. A. Hamid

Cuprous oxide (Cu2O) thin films were deposited onto indium tin oxide (ITO) coated glass substrate by sol-gel spin coating technique using different additives, namely, polyethylene glycol and ethylene glycol. It was found that the organic additives added had a significant influence on the formation of Cu2O films and lead to different microstructures and optical properties. The films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Based on the FESEM micrographs, the grain size of film prepared using polyethylene glycol additive has smaller grains of about 83 nm with irregular shapes. The highest optical absorbance film was obtained by the addition of polyethylene glycol. The Cu2O thin films were used as a working electrode in the application of photoelectrochemical solar cell (PESC).


Sign in / Sign up

Export Citation Format

Share Document