scholarly journals In Situ Polymerization to Boron Nitride-Fluorinated Poly Methacrylate Composites as Thin but Robust Anti-Corrosion Coatings

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1518
Author(s):  
Qingqing Hu ◽  
Aijuan Lv ◽  
Yukang Ma ◽  
Yan Wang ◽  
Haoyi Zhang ◽  
...  

High-performance anti-corrosion coatings featuring easy processability and thin thickness are highly desired in industry. Yet, solution process coating often faces a sedimentation problem with particles which are used as reinforcement in coatings. In this contribution, boron nitride (BN) was modified by an acrylate silane coupling agent (KH-570) to obtain acrylated BN flakes. Afterwards, the acrylated BN flakes were in situ copolymerized with 2-(perfluorohexyl)ethyl methacrylate to synthesize BN-fluorinated poly methacrylate (PFBP) composites. The as-obtained PFBP composites can form stable coating solutions, in which sedimentation of BN flakes seldom happens. The coating solution can easily form uniform coatings on various substrates with nanoscale thickness, confirmed by scanning electron microscope (SEM). The corrosion resistance of the samples coated PFBP coatings in 3.5 wt.% sodium chloride solution was evaluated by electrochemical impedance spectroscopy (EIS). It is indicated that the incorporation of BN flakes greatly reduce the corrosion rate. Adhesion measurements and abrasion resistance test indicate the PFBP coating performs good adhesion to substrate and robustness. Through the in situ polymerization, acrylated BN flakes are connected with the polymer chain, which inhibits the sedimentation of BN in the coating solution. Additionally, the BN flakes dispersed in the fluorinated polymer act as barriers, improving the corrosion resistance of the coated samples.

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2810
Author(s):  
Tian Hao ◽  
Yao Wang ◽  
Zhipeng Liu ◽  
Jie Li ◽  
Liangang Shan ◽  
...  

Nano-modification of polyester has become a research hotspot due to the growing demand for high-performance polyester. As a functional carrier, silica nanoparticles show large potential in improving crystalline properties, enhancing strength of polyester, and fabricating fluorescent polyester. Herein, we briefly traced the latest literature on synthesis of silica modifiers and the resultant polyester nanocomposites and presented a review. Firstly, we investigated synthesis approaches of silica nanoparticles for modifying polyester including sol-gel and reverse microemulsion technology, and their surface modification methods such as grafting silane coupling agent or polymer. Then, we summarized processing technics of silica-polyester nanocomposites, like physical blending, sol-gel processes, and in situ polymerization. Finally, we explored the application of silica nanoparticles in improving crystalline, mechanical, and fluorescent properties of composite materials. We hope the work provides a guideline for the readers working in the fields of silica nanoparticles as well as modifying polyester.


2012 ◽  
Vol 557-559 ◽  
pp. 519-522
Author(s):  
Xu Man Wang ◽  
Cai Ning Zhang

Silane coupling agent KH-570 was applied to modify the surface capability of the alumina (Al2O3). The modified Al2O3were dispersed in styrene. The in-situ polymerization was used to prepare the polystyrene/alumina (PS/Al2O3) composites, in which azodiisobutyronitrile (AIBN) was used as initiator. FTIR, DSC and TG were applied to characterize the prepared composites. The solvent resistance, thermal resistance of the composites and the average molecular weight of PS in PS/Al2O3nanocomposites were studied. The experimental results demonstrated that the solvent resistance of PS/Al2O3nanocomposites was improved by the adding of Al2O3nanoparticles. The thermal resistance of the composites increased with the increasing of the Al2O3content. Meanwhile, the molecular weight of PS in the composites increased with the increasing of the Al2O3content.


2005 ◽  
Vol 11 (S03) ◽  
pp. 82-85 ◽  
Author(s):  
E. T. Uzumaki ◽  
C. S. Lambert ◽  
A. R. Santos Jr. ◽  
C. A. C. Zavaglia

Diamond-like carbon (DLC) films have been intensively studied with a view to improving orthopaedic implants. Studies have indicated smoothness of the surface, low friction, high wear resistance, corrosion resistance and biocompatibility [1-4]. DLC coatings can be deposited using various techniques, such as plasma assisted chemical vapour deposition (PACVD), magnetron sputtering, laser ablation, and others [5]. However it has proved difficult to obtain films which exhibit good adhesion. The plasma immersion process, unlike the conventional techniques, allows the deposition of DLC on three-dimensional workpieces, even without moving the sample, without an intermediate layer, and with high adhesion [6], an important aspect for orthopaedic articulations. In our previous work, DLC coatings were deposited on silicon and Ti-13Nb-13Zr alloy substrates using the plasma immersion process for the characterization of microstructure, mechanical properties and corrosion behaviour [7-9]. Hardness, measured by a nanoindenter, ranged from 16.4-17.6 GPa, the pull test results indicate the good adhesion of DLC coatings to Ti-13Nb-13Zr, and electrochemical assays (polarization test and electrochemical impedance spectroscopy) indicate that DLC coatings produced by plasma immersion can improve the corrosion resistance [9].


Author(s):  
Xiaojuan Shen ◽  
Xuan Zhang ◽  
Tongfei Wang ◽  
Songjun Li ◽  
Zhaoqiang Li

In this study, a novel 3D porous Si-based supercapacitor electrode was developed by the simple solution method, which involved firstly the in-situ polymerization of polyaniline particles (PANI) on the Si...


2019 ◽  
Vol 361 ◽  
pp. 897-907 ◽  
Author(s):  
Jingchun Lv ◽  
Peiwen Zhou ◽  
Linping Zhang ◽  
Yi Zhong ◽  
Xiaofeng Sui ◽  
...  

2007 ◽  
Vol 280-283 ◽  
pp. 1385-1390
Author(s):  
Guo Jun Zhang ◽  
Tatsuki Ohji ◽  
Shuzo Kanzaki

Based on the proposed inorganic reactions a series of high performance hexagonal boron nitride-containing composites (BNCC), include SiC-BN, Si3N4-SiC-BN, SiAlON-BN, AlN-BN, Al2O3-BN, AlON-BN and mullite-BN, have been prepared via reactive hot pressing or pressureless reactive sintering. Various boron-bearing components such as B, B4C, AlB2, SiB4, SiB6, B2O3 or H3BO3, 9Al2O3×2B2O3 (9A2B) and 2Al2O3×B2O3 (2AB) are used as the boron source. On the other hand, nitrogen gas or solid state nitirgen-bearing metal nitrides such as Si3N4 and AlN can be used as the nitrogen source. The in situ synthesized composites demonstrated homogeneous and isotropical microstructures with very fine (nano-sized) BN platelets or their agglomerates distributed in the matrixes. These composites showed high strength, low elasticity and improved strain tolerance. In this article the reaction design, thermodynamics, reaction mechanisms, reactive hot pressing or pressureless reactive sintering, microstructures and mechanical properties will be discussed.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 985 ◽  
Author(s):  
Yidong Liu ◽  
Lingfeng Jian ◽  
Tianhua Xiao ◽  
Rongtao Liu ◽  
Shun Yi ◽  
...  

CO2 has been regarded as one of the most promising blowing agents for polystyrene (PS) foam due to its non-flammability, low price, nontoxicity, and eco-friendliness. However, the low solubility and fast diffusivity of CO2 in PS hinder its potential applications. In this study, an attapulgite (ATP)/polypyrrole (PPy) nanocomposite was developed using the in situ polymerization method to generate the hierarchical cell texture for the PS foam based on the supercritical CO2 foaming. The results demonstrated that the nanocomposite could act as an efficient CO2 capturer enabling the random release of it during the foaming process. In contrast to the pure PS foam, the ATP/PPy nanocomposite reinforced PS foam is endowed with high cell density (up to 1.9 × 106) and similar thermal conductivity as the neat PS foam, as well as high compression modulus. Therefore, the in situ polymerized ATP/PPy nanocomposite makes supercritical CO2 foaming desired candidate to replace the widely used fluorocarbons and chlorofluorocarbons as PS blowing agents.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 118 ◽  
Author(s):  
Alam ◽  
Samad ◽  
Sherif ◽  
Poulose ◽  
Mohammed ◽  
...  

Epoxy coating formulations containing 1%, 3%, and 5% SiO2 nanoparticles were produced and applied on a mild steel substrate to achieve the objective of high performance corrosion resistance. The electrochemical impedance spectroscopy (EIS) technique was employed to measure the anticorrosive properties of coatings. The corrosion tests were performed by exposing the coated samples in a solution of 3.5% NaCl for different periods of time, varied from 1 h and up to 30 days. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analyses revealed the presence of nanoparticles in the final cured samples. Establishing the incorporation of the nanoparticles in the coating formulations was confirmed by employing both of XRD and FT-IR techniques. The FT-IR spectra have proved to be satisfactory indicating that there was a complete reaction between the epoxy resin with the hardener. EIS measurements confirmed that the presence and the increase of SiO2 nanoparticles greatly improved the corrosion resistance of the epoxy coating. The highest corrosion resistance for the coatings was obtained for the formulation with 5% SiO2 nanoparticles content, particularly with prolonging the immersion time to 30 days.


2014 ◽  
Vol 989-994 ◽  
pp. 164-167
Author(s):  
Rui Feng

An in-situ polymerization method was used for the preparation of a novel stir bar based on neodymium magnet (Nd2Fe14B) powders. The processes were carried out by several steps including the enwrapping of Nd2Fe14B, the modification of the enclosed Nd2Fe14B, and the form of organic polymers on the surface of the modified powders. It was successfully used to enrich the plasticizers in water sample by stir bar sorptive extraction (SBSE). The experimental conditions for SBSE, such as the choice of extraction sorvents, salt concentration, extraction and desorption time were optimized in detail. Coupled to high performance liquid chromatography (HPLC), the recoveries of dibutyl phthalate (DBP), dimethyl phthalate (DMP), diethyl phthalate (DEP) were 89.2%~92.1%, 91.9%~96.6% and 94.3%~96.7%, respectively; the linear relationships between the concentration 5 μg/L and 800 μg/L for DBP were obtained; the limits of detection ranged from 0.09 μg/L to 0.21 μg/L in the optimal conditions.


RSC Advances ◽  
2020 ◽  
Vol 10 (73) ◽  
pp. 44688-44698
Author(s):  
Yulin Jiang ◽  
Jiawen Ji ◽  
Leping Huang ◽  
Chengen He ◽  
Jinlong Zhang ◽  
...  

Efficient ball-milling production of graphene/polyaniline composites as supercapacitor electrodes with enhanced capacitive contribution, rate capability, and specific capacitance.


Sign in / Sign up

Export Citation Format

Share Document