scholarly journals Synthesis and Characteristics of Zn-Doped CuCrO2 Transparent Conductive Thin Films

Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 321
Author(s):  
Ruei-Sung Yu ◽  
Chen Chu

The effects of doping a p-type CuCrO2 film with zinc on its structural and optoelectronic properties were investigated by experiments using CuCr1−xZnxO2 thin films (x = 0, 0.025, 0.065, 0.085). An increase in the amount of zinc dopant in the thin films affected the lattice constant and increased its Gibbs free energy of phase transformation. Cross-sectional images of the CuCrO2 thin film samples exhibited a dense polygonal microstructure and a surface morphology with protruding nanoscale granules. With the increase in the amount of Zn dopant, the surface roughness decreased, thereby increasing the amount of incident photons as well as the visible-light transmittance and ultraviolet-light absorption of the thin films. With the zinc doping in the CuCrO2 thin films, the band gap increased from 3.09 to 3.11 eV. The substitution of Cr3+ with Zn2+ forms hole carriers in the crystals, which was demonstrated by X-ray photoelectron spectroscopy and Hall effect measurements. The conductivities and carrier concentrations of the Zn-doped CuCrO2 thin films were greater than those of undoped CuCrO2. The CuCr1−xZnxO2 film (x = 0.065) exhibited the best optoelectronic properties; its carrier concentration and resistivity were 1.88 × 1017 cm−3 and 3.82 Ωcm, respectively.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 193560-193568
Author(s):  
Mohammad Aminul Islam ◽  
Md. Khan Sobayel Bin Rafiq ◽  
Halina Misran ◽  
Md. Akhtar Uzzaman ◽  
Kuaanan Techato ◽  
...  

2011 ◽  
Vol 519 (10) ◽  
pp. 3021-3025 ◽  
Author(s):  
Ming Yang ◽  
Zhan Shi ◽  
Jiahan Feng ◽  
Haifeng Pu ◽  
Guifeng Li ◽  
...  

2002 ◽  
Vol 16 (01n02) ◽  
pp. 308-313 ◽  
Author(s):  
YUE WANG ◽  
HAO GONG ◽  
LING LIU

P-type transparent conducting oxide thin films have attracted much attention due to their potential applications in novel transparent p-n junction devices. In this work, the transparent conducting Cu-Al-O thin films were prepared by the plasma enhanced chemical vapor deposition using metal organic precursors of Cu(acac) 2 and Al(acac) 3 (acac=acetylacetonate) while the substrate temperature was varied from 700 to 800°C. The x-ray diffraction and SEM results are analyzed to investigate the structure of the as-deposited and annealed films. The films contain metal copper and small grains of CuAlO 2. After annealing, metal copper turned into CuO . Hall effect measurements reveal that these films are p-type semiconductors and the film conductivity increased with the growth temperature.


2009 ◽  
Vol 1217 ◽  
Author(s):  
Yoshitaka Nakano ◽  
Shu Saeki ◽  
Takeshi Morikawa

AbstractWe have investigated the effect of N doping into Cu2O films deposited by reactive magnetron sputtering. With increasing N-doping concentration up to 3 at.%, the optical bandgap energy is enlarged from ˜2.1 to ˜2.5 eV with retaining p-type conductivity as determined by optical absorption and Hall-effect measurements. Additionally, photoelectron spectroscopy in air measurements shows an increase in the valence and conduction band shifts with N doping. These experimental results demonstrate possible optical bandgap widening of p-type N-doped Cu2O films, which is a phenomenon that is probably associated with significant structural changes induced by N doping, as suggested from x-ray diffraction measurements.


Sign in / Sign up

Export Citation Format

Share Document