scholarly journals Non-Linear Numerical Modelling of Sustainable Advanced Composite Columns Made from Bamboo Culms

2021 ◽  
Vol 1 (3) ◽  
pp. 169-188
Author(s):  
Cameron Richardson ◽  
Amir Mofidi

The present article uses the finite element analysis (FEA) software ABAQUS to model a bamboo-based advanced composite column for construction. Different numerical models were analysed to be able to predict the behaviour of a bamboo-based composite column tested by the same group. Bamboo-based composites maintain the inherent excellent mechanical properties of raw bamboo whilst adding a certain degree of processing and engineering. Thus, the composite individual samples are more consistent and reliable when compared with their raw counterparts. A buckling analysis is carried out to determine the response of the composites to axial compressive loading. Different modelling elements and imperfection parameters were implemented separately in different FEA models so that the efficacy of each could be established and suggestions could be made with regard to the modelling elements and size of imperfection that should be used in future models. The results are compared to empirical findings, giving insights into the quality of results that can be obtained using numerical modelling. This also allowed for an evaluation of the methods and assumptions applied in the model. The load at rupture and displacements obtained by the numerical model were comparable to the experimental findings, with only minor differences observed.

2011 ◽  
Vol 243-249 ◽  
pp. 1360-1365 ◽  
Author(s):  
Wei Rong Lü ◽  
Meng Wang ◽  
Xi Jun Liu

The micro-model, which the brick and the mortar model are separated, is used to analyze masonry. Meanwhile, the mortar is divided into three layers along the thickness direction to obtain the internal mechanical behavior of mortar, and the vertical mortar joint strength is taken as 50% strength of the horizontal mortar joint for considering the poor quality of vertical mortar joint. The compressive ultimate load and failure mode of masonry taken from the finite element analysis result, especially the vertical cracks throughout all bricks and mortar and change of brick and mortar strain, are in agreement with the experimental results. It shows that the micro-model and method adopted in paper are able to effectively apply in nonlinear structural analysis for masonry.


2012 ◽  
Vol 531 ◽  
pp. 609-612
Author(s):  
Xue Dong Han ◽  
Li Wei ◽  
Gang Luo ◽  
Li Ping Chang

The intensity of the joint in the bottom chord would affect the quality of the whole bridge because that the force of the bottom-through bridge is transferred mainly through the bottom chord, and the members of the truss connect each other by using the thread. In this paper, the bottom chord around the tapped holes is reinforced by composite material , and the stress on the bottom chord is analyzed before and after the reinforcement using the finite element analysis method, and the stress distributions in the directions of X,Y and Z on every layer of the composite material under the bilateral reinforcing condition are extracted and compared. The results show that: Reinforcing the bottom chord around the tapped holes using the composite material can change the stress level of the bottom chord effectively, helping to improve the quality of the construction of the steel bridge and the effect of the bilateral reinforcing is better than the unilateral reinforcing and providing certain reference for the security of the steel truss bridge


2014 ◽  
Vol 680 ◽  
pp. 249-253
Author(s):  
Zhang Qi Wang ◽  
Jun Li ◽  
Wen Gang Yang ◽  
Yong Feng Cheng

Strain clamp is an important connection device in guy tower. If the quality of the compression splicing position is unsatisfied, strain clamp tends to be damaged which may lead to the final collapse of a guy tower as well as huge economic lost. In this paper, stress distribution on the compressible tube and guy cable is analyzed by FEM, and a large equivalent stress of guy cable is applied to the compression splicing position. During this process, a finite element model of strain clamp is established for guy cables at compression splicing position, problems of elastic-plastic and contracting are studied and the whole compressing process of compressible position is simulated. The guy cable cracks easily at the position of compressible tube’s port, the inner part of the compressible tube has a larger equivalent stress than outside.


2010 ◽  
Vol 129-131 ◽  
pp. 867-871 ◽  
Author(s):  
Yao Hui Lu ◽  
Ping Bo Wu ◽  
Jing Zeng ◽  
Xing Wen Wu

The control of welding distortion during assembling process is very important. Using numerical simulation methods to obtain the welding distortion is an effective way to control the quality of welding. At first, taking the bead-on-plate welding as an example, the predictions of welding distortion were made using the shrinkage force method and the thermo-elastic-plastic method for comparison. It was concluded from the comparison that the simulation results by using the two methods are consistent. Therefore, the shrinkage force method can be applied to prediction of structural welding distortion in engineering. Based on the theory of welding shrinking force, welding deformation was predicted for the bogie side frame of railway vehicle. According to all the deformation results from the finite element analysis, the welding deformation of the bogie side frame was lager than the tolerance of quality and in reasonable agreement with the experimentally determined distortion values from literature. The work in this paper indicated that the shrinkage force method was effective to predict the welding deformation and to control the welding quality in large complex structures, such as the bogie frame of railway vehicle.


2014 ◽  
Vol 599-601 ◽  
pp. 413-416 ◽  
Author(s):  
Hu Zhu ◽  
Jin Ju ◽  
Yi Bo Liu

For the purpose of the fabrication of the sheet-metal parts with non-horizontal end face using the sheet metal CNC incremental forming technology, two kinds of path generating methods, namely the level path perpendicular to Z axis method and the equidistant path parallel to sheet metal are proposed in this paper. Both of the paths are generated by Visual C++ and OpenGL graphics library, the effect of the two kinds of forming paths to the forming quality of the sheet part with non-horizontal end face is researched using the finite element analysis method in this paper.


2011 ◽  
Vol 255-260 ◽  
pp. 1261-1265 ◽  
Author(s):  
Bo Wang ◽  
Yu Xiang Liu

A four span curved HcontinuousH HboxH-girder bridge is used as an engineering example to investigate the effect of radius of curvature on the seismic response of curved bridge. Numerical models with different radii of curvature are created using the finite element analysis program Midas/Civil. The calculation results obtained from response spectrum method show that radius of curvature is an important parameter to curved bridge. When the radius of curvature is large enough, the relationship between seismic response of main girder and radius is approximately linearity, while nonlinear variation is obtained when theradius is not too large. Finally, conclusions are made that seismic design of Hstraight bridgeH unHfoldHed from curved bridge which radius of curvature is specified could Hsatisfy the engineering Hrequirement.


1986 ◽  
Vol 108 (3) ◽  
pp. 198-204 ◽  
Author(s):  
W. T. Carter ◽  
D. Lee

Analytical modeling of deformation processing methods requires a thorough understanding of the die–billet interfacial conditions, in particular, the nature of frictional boundary conditions. In order to gain insight into the role of friction on the deformation behavior of metals under uniaxial compression, a series of carefully controlled experiments were made with 6061-T6 aluminum cylinder and ring specimens. From measurements of the change in internal diameter and the height of the ring specimens, the average friction coefficient can be found using the calibration method proposed by Male and Cockcroft. Using this friction coefficient, a series of finite element analyses were made to model the deformation of solid aluminum cylinders which were compressed under identical die–billet contact conditions. An updated Lagrangian formulation and the contact surface algorithm of the ADINA finite element code were used in the analysis. Comparison of the experimental findings with those of the finite element analysis shows some discrepancies; possible causes for these differences are identified.


2014 ◽  
Vol 578-579 ◽  
pp. 263-268
Author(s):  
Bing Li ◽  
Qi Zhang ◽  
Shuang Meng

The paper achieved the nonlinear analysis of bearing capacity of recycled concrete filled steel tubular short columns by using finite element analysis software ABAQUS. In order to meet the finite element analysis the writer put forward the modified formula of recycled concrete constitutive relationship of core, and elaborate d the contact at the interface of steel tube and the core concrete and related modeling points. Finally the load-deformation curves of the finite element analysis and test results coincide well. It indicates that the modified formula of recycled concrete constitutive relationship can better meet the requirements of analyzing bearing capacity of recycled concrete filled circular steel tubular columns under compressive Loading by using ABAQUS. Through the simulation experiment, it is useful for us to obtain the ultimate reliable bearing capacity of the similar structure member.


2011 ◽  
Vol 255-260 ◽  
pp. 619-623
Author(s):  
Yao Zeng ◽  
Chong Wu

Two different specimens of hollow composite columns with perforated ribs, one is the column with double steel skin and the other is with single steel skin, were designed for imposing axial compression test. The tests indicated that both of the columns have a good bearing capacity and the column with double steel skin has a comparatively better bearing capacity than the one with single steel skin. Then comparisons between tests and finite element analysis (FEA) were preceded, which showed that not only the load-displacement relationship of the columns, but also a reasonable failure mode can be simulated by the finite element analysis.


2012 ◽  
Vol 588-589 ◽  
pp. 1274-1277
Author(s):  
L. Yang ◽  
Z.M. Zhang ◽  
W.F. Fan

Being an important blanking parameter, the blanking allowance of fine-blanking with negative clearance has a direct relationship with the quality of work piece and ejector force. The full process of fine-blanking with negative clearance for ASTM-1022 in different blanking allowances is simulated through the finite element analysis software DEFORM-2D, then the ejector force under different blanking allowances is measured through the experiment of fine-blanking with negative clearance. Based on the analysis of the ejector force, the proportion of burnish band and the work piece fracture, the following conclusions are summarized. The size of blanking allowance is not related with the blanking force with the sheet entering plastic state and the maximum blanking force, and is only related with the ejector force. When the value of the blanking allowance is between 0.1mm and 0.3mm, the friction force between the punch-die and the sheet affects ejector force, and the ejector force is not related with the mechanical properties of material. When the value of the blanking allowance is between 0.5mm and 0.8mm, with the blanking allowance increasing, the ejector force increases rapidly.


Sign in / Sign up

Export Citation Format

Share Document