scholarly journals An Overview of the Compton Scattering Calculation

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 525
Author(s):  
Chen-Kai Qiao ◽  
Jian-Wei Wei ◽  
Lin Chen

The Compton scattering process plays significant roles in atomic and molecular physics, condensed matter physics, nuclear physics and material science. It could provide useful information on the electromagnetic interaction between light and matter. Several aspects of many-body physics, such us electronic structures, electron momentum distributions, many-body interactions of bound electrons, etc., can be revealed by Compton scattering experiments. In this work, we give a review of ab initio calculation of Compton scattering process. Several approaches, including the free electron approximation (FEA), impulse approximation (IA), incoherent scattering function/incoherent scattering factor (ISF) and scattering matrix (SM) are focused on in this work. The main features and available ranges for these approaches are discussed. Furthermore, we also briefly introduce the databases and applications for Compton scattering.

2020 ◽  
Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>


1991 ◽  
Vol 44 (8) ◽  
pp. 4006-4009 ◽  
Author(s):  
B. B. Goldberg ◽  
D. Heiman ◽  
M. Dahl ◽  
A. Pinczuk ◽  
L. Pfeiffer ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
pp. 253-261
Author(s):  
Angel Ricardo Plastino ◽  
Gustavo Luis Ferri ◽  
Angelo Plastino

We employ two different Lipkin-like, exactly solvable models so as to display features of the competition between different fermion–fermion quantum interactions (at finite temperatures). One of our two interactions mimics the pairing interaction responsible for superconductivity. The other interaction is a monopole one that resembles the so-called quadrupole one, much used in nuclear physics as a residual interaction. The pairing versus monopole effects here observed afford for some interesting insights into the intricacies of the quantum many body problem, in particular with regards to so-called quantum phase transitions (strictly, level crossings).


2021 ◽  
Vol 118 (11) ◽  
pp. 113101
Author(s):  
Xiaoli Zhu ◽  
Siting Ding ◽  
Lihui Li ◽  
Ying Jiang ◽  
Biyuan Zheng ◽  
...  

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Chen-Kai Qiao ◽  
Shin-Ted Lin ◽  
Hsin-Chang Chi ◽  
Hai-Tao Jia

Abstract The millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, we develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles. The formulation of RIA in the atomic ionization induced by millicharged particles is derived, and the numerical calculations are obtained and compared with those from free electron approximation and equivalent photon approximation. Concretely, the atomic ionizations induced by mllicharged dark matter particles and millicharged neutrinos in high-purity germanium (HPGe) and liquid xenon (LXe) detectors are carefully studied in this work. The differential cross sections, reaction event rates in HPGe and LXe detectors, and detecting sensitivities on dark matter particle and neutrino millicharge in next-generation HPGe and LXe based experiments are estimated and calculated to give a comprehensive study. Our results suggested that the next-generation experiments would improve 2-3 orders of magnitude on dark matter particle millicharge δχ than the current best experimental bounds in direct detection experiments. Furthermore, the next-generation experiments would also improve 2-3 times on neutrino millicharge δν than the current experimental bounds.


2005 ◽  
Vol 72 (21) ◽  
Author(s):  
Mitsuharu Higashiguchi ◽  
Kenya Shimada ◽  
Keisuke Nishiura ◽  
Xiaoyu Cui ◽  
Hirofumi Namatame ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fuyang Zhou ◽  
Yizhi Qu ◽  
Junwen Gao ◽  
Yulong Ma ◽  
Yong Wu ◽  
...  

AbstractAn ion embedded in warm/hot dense plasmas will greatly alter its microscopic structure and dynamics, as well as the macroscopic radiation transport properties of the plasmas, due to complicated many-body interactions with surrounding particles. Accurate theoretically modeling of such kind of quantum many-body interactions is essential but very challenging. In this work, we propose an atomic-state-dependent screening model for treating the plasmas with a wide range of temperatures and densities, in which the contributions of three-body recombination processes are included. We show that the electron distributions around an ion are strongly correlated with the ionic state studied due to the contributions of three-body recombination processes. The feasibility and validation of the proposed model are demonstrated by reproducing the experimental result of the line-shift of hot-dense plasmas as well as the classical molecular dynamic simulations of moderately coupled ultra-cold neutral plasmas. Our work opens a promising way to treat the screening effect of hot and warm dense plasma, which is a bottleneck of those extensive studies in high-energy-density physics, such as atomic processes in plasma, plasma spectra and radiation transport properties, among others.


2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740025 ◽  
Author(s):  
J. Speth ◽  
N. Lyutorovich

Many-body Green functions are a very efficient formulation of the many-body problem. We review the application of this method to nuclear physics problems. The formulas which can be derived are of general applicability, e.g., in self-consistent as well as in nonself-consistent calculations. With the help of the Landau renormalization, one obtains relations without any approximations. This allows to apply conservation laws which lead to important general relations. We investigate the one-body and two-body Green functions as well as the three-body Green function and discuss their connection to nuclear observables. The generalization to systems with pair correlations are also presented. Numerical examples are compared with experimental data.


Sign in / Sign up

Export Citation Format

Share Document