scholarly journals Copper Oxide Films Deposited by Microwave Assisted Alkaline Chemical Bath

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 968
Author(s):  
Reina Galeazzi Isasmendi ◽  
Isidro Juvenal Gonzalez Panzo ◽  
Crisóforo Morales-Ruiz ◽  
Román Romano Trujillo ◽  
Enrique Rosendo ◽  
...  

Copper oxide (CuO) films were deposited onto glass substrates by the microwave assisted chemical bath deposition method, and varying the pH of the solution. The pH range was varied from 11.0 to 13.5, and the effects on the film properties were studied. An analytical study of the precursor solution was proposed to describe and understand the chemical reaction mechanisms that take place in the chemical bath at certain pH to produce the CuO film. A series of experiments were performed by varying the parameters of the analytical model from which the CuO films were obtained. The crystalline structure of the CuO films was studied using X-ray diffraction, while the surface morphology, chemical composition, and optical band-gap energy were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy, and UV–Vis spectrophotometry, respectively. The CuO films obtained exhibited a monoclinic crystalline phase, nanostructured surface morphology, stoichiometric Cu/O ratio of 50/50 at%, and band-gap energy value of 1.2 eV.

Chemija ◽  
2019 ◽  
Vol 30 (2) ◽  
Author(s):  
Birutė Šimkūnaitė-Stanynienė ◽  
Giedrė Grincienė ◽  
Leonas Naruškevičius ◽  
Loreta Tamašauskaitė-Tamašiūnaitė ◽  
Algirdas Selskis ◽  
...  

The thin ZnO films were deposited using the successive ionic layer adsorption and reaction (SILAR) method. The morphology, structure and composition of the thin ZnO films were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The optical properties of the thin ZnO layers, which were deposited onto glass substrates, were investigated using ultraviolet–visible spectrophotometry (UV/Vis). It was found that the optical properties of the ZnO films depend on the composition of anionic precursor solutions, which were used for deposition of the ZnO layers. Moreover, the highest band gap energy of 3.86 eV was obtained for the ZnO layer when the 0.026 mol l–1 Na2B4O7 + 0.002 mol l–1 KMnO4 solution was used as the anionic precursor solution for the deposition of ZnO layers.


2015 ◽  
Vol 15 (2) ◽  
pp. 111-116 ◽  
Author(s):  
Deependra Das Mulmi ◽  
Agni Dhakal ◽  
Buddha Ram Shah

Zinc oxide (ZnO) thin films were deposited on the ordinary glass substrates by spin coating method. The precursor solution was prepared by mixing zinc acetate dehydrate in appropriate proportions with ethanol and diethanolamine (DEA). The obtained thin films were dried at 200°C for 15 minutes in hot air oven. Crystalline ZnO thin films were achieved following annealing process at temperatures 300°, 400° and 500°C for 2 hours. Thin films as- prepared were studied by X-ray diffraction and UV-visible spectroscopy. The films were transparent from near ultraviolet to infrared region. Optical band gap energy of ZnO was obtained 3.22 eV at 300°C. On annealing at 400° and 500°C, band gap energy was shifted at 3.14 eV and 3.05 eV respectively.DOI: http://dx.doi.org/njst.v15i2.12126Nepal Journal of Science and Technology Vol. 15, No.2 (2014) 111-116


2013 ◽  
Vol 764 ◽  
pp. 266-283 ◽  
Author(s):  
Ibram Ganesh ◽  
Rekha Dom ◽  
P.H. Borse ◽  
Ibram Annapoorna ◽  
G. Padmanabham ◽  
...  

Different amounts of Fe, Co, Ni and Cu-doped TiO2 thin films were prepared on fluorine doped tin oxide (FTO) coated soda-lime glass substrates by following a conventional sol-gel dip-coating technique followed by heat treatment at 550 and 600°C for 30 min. These thin films were characterized for photo-current, chronoamperometry and band-gap energy values. The chemical compositions of metals-doped TiO2 thin films on FTO glass substrates were confirmed by XPS spectroscopic study. The metal-ions doped TiO2 thin films had a thickness of <200 nm="" optical="" transparency="" of="">80%, band-gap energy of >3.6 eV, and a direct band-to-band energy transition. The photoelectrochemical (PEC) studies revealed that all the metal-ions doped TiO2 thin films exhibit n-type semi-conducting behavior with a quite stable chronoamperometry and photo-currents that increase with the increase of applied voltage but decrease with the dopant metal-ion concentration in the thin film. Furthermore, these thin films exhibited flat-band potentials amenable to water oxidation reaction in a PEC cell. The 0.5 wt.% Cu-doped TiO2 thin film electrode exhibited an highest incident photon-to-current conversion efficiency (IPCE) of about 21%.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Marek Nocuń ◽  
Sławomir Kwaśny

AbstractIn our investigation, V doped SiO2/TiO2 thin films were prepared on glass substrates by dip coating sol-gel technique. Chemical composition of the samples was studied by X-ray photoelectron spectroscopy (XPS). Transmittance of the samples was characterized using UV-VIS spectrophotometry. Subsequently band-gap energy (Eg) was estimated for these films. Powders obtained from sols were characterized by FTIR spectroscopy. It was found that vanadium decreases optical band gap of SSiO2/TiO2 films.


2011 ◽  
Vol 35 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Fatema Rezwana Chowdhury ◽  
Shamima Choudhury ◽  
Firoz Hasan ◽  
Tahmina Begum

Thin films of Tin Oxide (SnO2), having thickness of 200 nm, were formed on to glass substrates by thermal evaporation of high-purity SnO2 powder in vacuum at various substrate temperatures (TS), ranging between 25 and 200°C. SnO2 films with varying thickness were also prepared for a fixed TS = 100°C. Further, doping of SnO2 films with Indium (In) was accomplished through solid state diffusion process by successive deposition of SnO2 and In films and subsequent annealing at 200°C for 10 minutes. Both undoped and doped films were characterized optically by UV-VIS-NIR spectrophotometry in the photon wavelength ranging from 300 to 2500 nm. In the visible photon wavelength range, the average optical transmittance (T%) of the films with varying TS was found to be 85%. The maximum value of T % was found to be 89 % around the wavelength of 700nm. The variation of absorption coefficient with photon energy in the fundamental absorption region is the steepest for TS = 100°C. The sub-band gap (SBG) absorption is also minimum for this Ts. A fluctuating behavior of the band gap energy (Eg) with Ts is observed attaining the highest value of 3.59 eV for Ts = 100°C. The band gap energy increases with thickness but T% in the visible range decreases. The T% in the visible range varies inversely with indium doping, being highest for undoped films. The Eg increases upto 2 wt% In doping and gradually decreases for enhanced doping. It seems reasonable to conclude that In doping does not bring favorable optical characteristics. Undoped SnO2 films having thickness of 200 nm and formed at substrate temperature of 100°C yield essential acceptable properties for photovoltaic applications.DOI: http://dx.doi.org/10.3329/jbas.v35i1.7975Journal of Bangladesh Academy of Sciences, Vol.35, No.1, 99-111, 2011


2017 ◽  
Vol 889 ◽  
pp. 234-238
Author(s):  
Mohd Hasmizam Razali ◽  
Nur Arifah Ismail ◽  
Mahani Yusoff

Pure and F doped TiO2 nanotubes was synthesized using simple hydrothermal method. The hydrothermal was conducted using teflon-liner autoclave and maintained at 150oC for 24 hours. The characterization of synthesised product was carried out using x-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive of x-ray spectroscopy (EDX) and ultra violet – visible light diffuse reflectance spectroscopy (UV-Vis DRS) for band gap measurements. XRD patterns indicated that anatase TiO2 phase was remained after F doping suggested that fluorine was highly dispersed into TiO2 by substituted with O in the TiO2 lattice to formed TiO2-xFx solid solution. Morphology investigation using TEM found out small diameter of nanotubes structure within 8 – 10 nm of pure and F doped TiO2 nanotubes. The band gap energy (Eg) of both nanotubes samples were almost similar proposing that F doping does not modify the band gap energy.


2011 ◽  
Vol 110-116 ◽  
pp. 1406-1410
Author(s):  
Hai Yi Li ◽  
Yan Lai Wang ◽  
Shi Liang Ban ◽  
Yi Min Wang

CdS thin films deposited on glass substrate are prepared by chemical bath deposition using the reaction between CdSO4 and CS (NH2)2. The composition, surface morphology and structural properties of as-deposited and annealed CdS thin films were studied using scanning electron microscopy (SEM), X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) techniques. The results indicate that the dense, homogeneous polycrystalline CdS thin films with smooth surface can be obtained by chemical bath deposition. The CdS thin films have cubic structure and the ratio of S and Cd is 1:1 in CdS thin films. Optical properties of CdS films were measured with ultraviolet-visible spectrophotometer. The optical band gap energy (Eg) of film sample was found to be 2.31 eV.


Sign in / Sign up

Export Citation Format

Share Document