scholarly journals Comparative Study of the Sensitivity of PLA, ABS, PEEK, and PETG’s Mechanical Properties to FDM Printing Process Parameters

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 995
Author(s):  
Mohammed Algarni ◽  
Sami Ghazali

Significant advances in fused deposition modeling (FDM), as well as its myriad applications, have led to its growing prominence among additive manufacturing (AM) technologies. When the technology was first developed, it was used for rapid prototyping to examine and analyze a product in the design stage. FDM facilitates rapid production, requires inexpensive tools, and can fabricate complex-shaped parts; it, therefore, became popular and its use widespread. However, various FDM processing parameters have proven to affect the printed part’s mechanical properties to different extents. The values for the printing process parameters are carefully selected based on the part’s application. This study investigates the effects of four process parameters (raster angle, layer thickness, infill percentage, and printing speed) on the mechanical behavior of printed parts that are based on available literature data. These process parameter’s influence on part’s mechanical properties varies depending on the FDM material. The study focuses on four FDM materials: polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), and polyethylene terephthalate glycol (PETG). This paper summarizes the state-of-the-art literature to show how sensitive the material’s mechanical properties are to each process parameter. The effect of each parameter on each material was quantified and ranked using analysis of variance (ANOVA). The results show that infill percentage then layer thickness are the most influential process parameter on most of the material’s mechanical properties. In addition, this work identifies gaps in existing studies and highlights opportunities for future research.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ali Alperen Bakır ◽  
Resul Atik ◽  
Sezer Özerinç

Purpose This paper aims to provide an overview of the recent findings of the mechanical properties of parts manufactured by fused deposition modeling (FDM). FDM has become a widely used technique for the manufacturing of thermoplastic parts. The mechanical performance of these parts under service conditions is difficult to predict due to the large number of process parameters involved. The review summarizes the current knowledge about the process-property relationships for FDM-based three-dimensional printing. Design/methodology/approach The review first discusses the effect of material selection, including pure thermoplastics and polymer-matrix composites. Second, process parameters such as nozzle temperature, raster orientation and infill ratio are discussed. Mechanisms that these parameters affect the specimen morphology are explained, and the effect of each parameter on the strength of printed parts are systematically presented. Findings Mechanical properties of FDM-produced parts strongly depend on process parameters and are usually lower than injection-molded counterparts. There is a need to understand the effect of each parameter and any synergistic effects involved better. Practical implications Through the optimization of process parameters, FDM has the potential to produce parts with strength values matching those produced by conventional methods. Further work in the field will make the FDM process more suitable for the manufacturing of load-bearing components. Originality/value This paper presents a critical assessment of the current knowledge about the mechanical properties of FDM-produced parts and suggests future research directions.


2019 ◽  
Vol 3 (3) ◽  
pp. 64 ◽  
Author(s):  
Arup Dey ◽  
Nita Yodo

Fused deposition modeling (FDM) is an additive manufacturing (AM) process that is often used to fabricate geometrically complex shaped prototypes and parts. It is gaining popularity as it reduces cycle time for product development without the need for expensive tools. However, the commercialization of FDM technology in various industrial applications is currently limited due to several shortcomings, such as insufficient mechanical properties, poor surface quality, and low dimensional accuracy. The qualities of FDM-produced products are affected by various process parameters, for example, layer thickness, build orientation, raster width, or print speed. The setting of process parameters and their range depends on the section of FDM machines. Filament materials, nozzle dimensions, and the type of machine determine the range of various parameters. The optimum setting of parameters is deemed to improve the qualities of three-dimensional (3D) printed parts and may reduce post-production work. This paper intensively reviews state-of-the-art literature on the influence of parameters on part qualities and the existing work on process parameter optimization. Additionally, the shortcomings of existing works are identified, challenges and opportunities to work in this field are evaluated, and directions for future research in this field are suggested.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1587
Author(s):  
Daniyar Syrlybayev ◽  
Beibit Zharylkassyn ◽  
Aidana Seisekulova ◽  
Mustakhim Akhmetov ◽  
Asma Perveen ◽  
...  

Additive Manufacturing is currently growing fast, especially fused deposition modeling (FDM), also known as fused filament fabrication (FFF). When manufacturing parts use FDM, there are two key parameters—strength of the part and dimensional accuracy—that need to be considered. Although FDM is a popular technology for fabricating prototypes with complex geometry and other part product with reduced cycle time, it is also limited by several drawbacks including inadequate mechanical properties and reduced dimensional accuracy. It is evident that part qualities are greatly influenced by the various process parameters, therefore an extensive review of the effects of the following process parameters was carried out: infill density, infill patterns, extrusion temperature, layer thickness, nozzle diameter, raster angle and build orientation on the mechanical properties. It was found from the literature that layer thickness is the most important factor among the studied ones. Although manipulation of process parameters makes significant differences in the quality and mechanical properties of the printed part, the ideal combination of parameters is challenging to achieve. Hence, this study also includes the influence of pre-processing of the printed part to improve the part strength and new research trends such as, vacuum-assisted FDM that has shown to improve the quality of the printing due to improved bonding between the layers. Advances in materials and technologies that are currently under development are presented. For example, the pre-deposition heating method, using an IR lamp of other technologies, shows a positive impact on the mechanical properties of the printed parts.


2020 ◽  
pp. 009524432093999
Author(s):  
Sivani Patibandla ◽  
Ahsan Mian

The extrusion-based three-dimensional printing technology such as fused deposition modeling (FDM) is the widely used one owing to its low cost. The FDM method can be used to fabricate parts with different fill densities, fill patterns, and process parameters such as extrusion temperature and print speed. In this research, influence of process parameters such as extrusion temperature and print speed on the physical characteristics such as the shape and the size of printed fibers in each layer, the fiber distance, and the fiber-to-fiber interface are investigated. In addition, their effects on mechanical characteristics of the printed samples are examined and interpreted with respect to the layer physical characteristics. To accomplish this, metastructure specimens were fabricated using acrylonitrile butadiene styrene polymer on a MakerBot 2X Replicator 3D printer. Three different extrusion temperatures (210, 230, and 250°C) and print speeds (100, 125, and 150 mm/s) were considered with an infill density of 50%. Optical microscopy was performed for layer physical characterization while the compression tests were done to evaluate the mechanical properties such as the failure strength, yield strength, and compressive modulus. It is observed that the print speed has minimal effect on mechanical properties; however, an improvement in mechanical properties is observed at higher fabrication temperature. Also, the lower fabrication temperature results in more uniform features within the layers as compared to those printed at higher extrusion temperature.


2021 ◽  
pp. 089270572110064
Author(s):  
Menderes Kam ◽  
Ahmet İpekçi ◽  
Ömer Şengül

This study investigated the effects of FDM (Fused Deposition Modeling) process parameters on mechanical properties (tensile strength, elongation, and impact strength) of 3D (three-dimensional) printed PA12 (Polyamide12) samples using Taguchi method. In the experimental design (L8), four different layer thickness (0.1, 0.15, 0.2, 0.25 mm), extruder temperature (250 and 260°C), filling structure (Rectilinear and Full Honeycomb), and occupancy rate (25 and 50%) were determined. The tensile and impact strength test samples were printed with the FDM method. Tensile and impact strength of the test samples were carried out according to ISO 527 and ISO 180 test standards. The findings obtained from tests were analyzed and compared. As a result, the layer thickness is most effective factor for enhance the mechanical properties instead extruder temperature, occupancy rate, and filling structure. The optimum tensile strength of determined for process parameters (layer thickness, occupancy rates, filling structures and extruder temperature) were 0.25 mm, 50%, Rectilinear, and 250°C, respectively. The optimum impact strength of determined for process parameters (layer thickness, occupancy rates, extruder temperature, and filling structures) were 0.25 mm, 50%, 250°C, and Rectilinear, respectively. PA12 filament material can be used to printing for sleeve bearing due to their mechanical properties. It can be used in the production of many machine parts and components due to its tensile strength, impact strength resistance and damping properties.


2020 ◽  
Author(s):  
Muhammad Salman Mustafa ◽  
Muhammad Qasim Zafar ◽  
Muhammad Arslan Muneer ◽  
Muhammad Arif ◽  
Farrukh Arsalan Siddiqui ◽  
...  

Abstract Fused Deposition Modeling (FDM) is a widely adopted additive manufacturing process to produce complex 3D structures and it is typically used in the fabrication of biodegradable materials e.g. PLA/PHA for biomedical applications. However, FDM as a fabrication process for such material needs to be optimized to enhance mechanical properties. In this study, dogbone and notched samples are printed with the FDM process to determine optimum values of printing parameters for superior mechanical properties. The effect of layer thickness, infill density, and print bed temperature on mechanical properties is investigated by applying response surface methodology (RSM). Optimum printing parameters are identified for tensile and impact strength and an empirical relation has been formulated with response surface methodology (RSM). Furthermore, the analysis of variance (ANOVA) was performed on the experimental results to determine the influence of the process parameters and their interactions. ANOVA results demonstrate that 44.7% infill density, 0.44 mm layer thickness, and 20C° printing temperatures are the optimum values of printing parameters owing to improved tensile and impact strength respectively. The experimental results were found in strong agreement with the predicted theoretical results.


2021 ◽  
pp. 251659842110311
Author(s):  
Shrikrishna Pawar ◽  
Dhananjay Dolas1

Fused deposition modeling (FDM) is one of the most commonly used additive manufacturing (AM) technologies, which has found application in industries to meet the challenges of design modifications without significant cost increase and time delays. Process parameters largely affect the quality characteristics of AM parts, such as mechanical strength and surface finish. This article aims to optimize the parameters for enhancing flexural strength and surface finish of FDM parts. A total of 18 test specimens of polycarbonate (PC)-ABS (acrylonitrile–butadiene–styrene) material are printed to analyze the effect of process parameters, viz. layer thickness, build orientation, and infill density on flexural strength and surface finish. Empirical models relating process parameters with responses have been developed by using response surface regression and further analyzed by analysis of variance. Main effect plots and interaction plots are drawn to study the individual and combined effect of process parameters on output variables. Response surface methodology was employed to predict the results of flexural strength 48.2910 MPa and surface roughness 3.5826 µm with an optimal setting of parameters of 0.14-mm layer thickness and 100% infill density along with horizontal build orientation. Experimental results confirm infill density and build orientation as highly significant parameters for impacting flexural strength and surface roughness, respectively.


Author(s):  
Shajahan Bin Maidin ◽  
Zulkeflee Abdullah ◽  
Ting Kung Hieng

One of the disadvantages of fused deposition modeling (FDM) is waste produced during the printing processes. This investigation focuses on using 100% recycled Acrylonitrile Butadiene Styrene (ABS) for the FDM process. The recycling begins with re-granule the waste ABS material and produces it into a new filament. The new recycled filament was used to print the test specimen. Investigation on the mechanical properties and the surface quality of the test specimen and comparison with standard ABS specimen was done. The result shows that the recycled ABS can be produced into filament with 335°C of extrusion temperature and 1.5 mm/s travel speed of the extruder conveyor. The surface roughness of recycled specimen is 6.94% higher than the standard ABS specimen. For ultimate tensile strength, there is a small difference in X and Y orientation between the standard and the recycled ABS specimen which are 22.93% and 19.98%, respectively. However, in Z orientation, it is 52.33% lower. This investigation proves that ABS can be recycled without significantly affecting its mechanical properties.


2017 ◽  
Vol 23 (5) ◽  
pp. 943-953 ◽  
Author(s):  
Anthony A. D’Amico ◽  
Analise Debaie ◽  
Amy M. Peterson

Purpose The aim of this paper is to examine the impact of layer thickness on irreversible thermal expansion, residual stress and mechanical properties of additively manufactured parts. Design/methodology/approach Samples were printed at several layer thicknesses, and their irreversible thermal expansion, tensile strength and flexural strength were determined. Findings Irreversible thermal strain increases with decreasing layer thickness, up to 22 per cent strain. Tensile and flexural strengths exhibited a peak at a layer thickness of 200 μm although the maximum was not statistically significant at a 95 per cent confidence interval. Tensile strength was 54 to 97 per cent of reported values for injection molded acrylonitrile butadiene styrene (ABS) and 29 to 73 per cent of those reported for bulk ABS. Flexural strength was 18 to 41 per cent of reported flexural strength for bulk ABS. Practical implications The large irreversible thermal strain exhibited that corresponding residual stresses could lead to failure of additively manufactured parts over time. Additionally, the observed irreversible thermal strains could enable thermally responsive shape in additively manufactured parts. Variation in mechanical properties with layer thickness will also affect manufactured parts. Originality/value Tailorable irreversible thermal strain of this magnitude has not been previously reported for additively manufactured parts. This strain occurs in parts made with both high-end and consumer grade fused deposition modeling machines. Additionally, the impact of layer thickness on tensile and flexural properties of additively manufactured parts has received limited attention in the literature.


Sign in / Sign up

Export Citation Format

Share Document