scholarly journals Biosynthesis of Silver Nanoparticles by Conyza canadensis and Their Antifungal Activity against Bipolaris maydis

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1443
Author(s):  
Yueming Yi ◽  
Changjin Wang ◽  
Xinxin Cheng ◽  
Kechuan Yi ◽  
Weidong Huang ◽  
...  

Silver nanoparticles were biosynthesized from Conyzacanadensis leaf extract with the help of a microwave oven. The UV-vis spectrum showed the maximum absorption at 441 nm, corresponding to the surface plasmon resonance of silver nanoparticles. Transmission electron microscope and scanning electron microscope images showed that the synthesized silver nanoparticles were spherical or near-spherical with an average diameter of 43.9 nm. X-ray diffraction demonstrated nanoparticles with a single-phase cubic structure. As-synthesized silver nanoparticles displayed prominent antifungal activity against Bipolaris maydis. The colony inhibition rate reached 88.6% when the concentration of nanosilver colloid was 100 μL·mL−1 (v/v). At such a concentration, no colony formation was observed on the solid plate. The diameter of the inhibition zone was 13.20 ± 1.12 mm. These results lay the foundation for the comprehensive control of plant pathogens using an environmentally friendly approach.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Elijah T. Adesuji ◽  
Omolara O. Oluwaniyi ◽  
Haleemat I. Adegoke ◽  
Roshila Moodley ◽  
Ayomide H. Labulo ◽  
...  

Biosynthesized silver nanoparticles (AgNPs) usingCassia hirsutaaqueous leaf extract were reported in this study. The synthesis was optimized by measuring various parameters such as temperature, time, volume ratio, and concentration. The surface plasmon resonance at 440 nm for 30°C and 420 nm for both 50°C and 70°C measured using the UV-Vis spectrophotometer confirmed the formation of AgNPs synthesized usingC.hirsuta(CAgNPs). The functional groups responsible for the reduction and stabilization of the NPs were identified using Fourier Transform Infrared (FTIR). The morphology, size, and elemental composition of the NPs were obtained using scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive X-ray spectroscopy (EDX). X-ray diffractometer was used to identify the phases and crystallinity of CAgNPs. Crystalline spherical NPs with average diameter of 6.9 ± 0.1 nm were successfully synthesized. The thermal analysis of CAgNPs was observed from DSC-TGA. The larvicidal results against the different larva instar stage ofCulex quinquefasciatusgave LC50= 4.43 ppm and LC90= 8.37 ppm. This is the first study on the synthesis of AgNPs usingC.hirsutaand its application against lymphatic filariasis vector. Hence, it is suggested that theC.hirsutasynthesized AgNPs would be environmentally benign in biological control of mosquito.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yang Liu ◽  
Yang Jiao ◽  
Fengyu Qu ◽  
Lihong Gong ◽  
Xiang Wu

Large scale SnO2nanotubes are successfully obtained by a facile hydrothermal method at a mild temperature. The morphologies and the microstructures of the as-synthesized SnO2products are characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). The average diameter of the nanotubes is about 100 nm. The phase and composition of the as-obtained products are investigated by X-ray diffraction (XRD). A series of comparison experiments were conducted by varying the experimental parameters, such as temperature, time, and the amount of the alkali, to study the formation mechanism of SnO2nanotubes.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 130
Author(s):  
Fatimah Al-Otibi ◽  
Reem A. Al-Ahaidib ◽  
Raedah I. Alharbi ◽  
Rana M. Al-Otaibi ◽  
Gadah Albasher

The green biosynthesis of nanoparticles by plant extracts is an attractive and promising technique for medicinal applications. In the current study, we chose one of the daisy plants, Aaronsohnia factorovskyi (which grows in the Najd region, Saudi Arabia), to investigate its anti-microbial efficacy, in combination with silver nanoparticles. The biosynthesized nanoparticles were evaluated for antibacterial activity against Staphylococcus aureus, Bacillussubtilis (Gram-positive), Pseudomonas aeruginosa, and Escherichia coli, (Gram-negative) using the disc diffusion method, while the antifungal activity was assessed against Fusarium oxysporum, Fusarium solani, Helminthosporiumrostratum, and Alternariaalternata. The potential phytoconstituents of the plant extracts were identified by Fourier-transform infrared spectroscopy (FT-IR) techniques, the Field emission scanning electron microscopy (FE-SEM), Chromatography/Mass Spectrometry (GC-MS) techniques, and Zeta potential analysis. The current study revealed the ability of the tested plant extract to convert silver ions to silver nanoparticles with an average diameter of 104–140 nm. Biogenic Aaronsohnia factorovskyi-silver nanoparticles (AF-AgNPs) showed significant antibacterial activity against Staphylococcus aureus with inhibition zone diameter to 19.00 ± 2.94 mm, and antifungal activity against Fusarium solani, which reduced the growth of fungal yarn to 1.5 mm. The innovation of the present study is that the green synthesis of NPs, which is simple, cost-effective, provides stable nano-materials, and can be an alternative for the large-scale synthesis of silver nanoparticles.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Priyanka Singh ◽  
Yeon Ju Kim ◽  
Hina Singh ◽  
Ramya Mathiyalagan ◽  
Chao Wang ◽  
...  

The strainBhargavaea indicaDC1 isolated from four-year-oldP. ginsengrhizospheric soil was used to perform rapid and extracellular biosynthesis of anisotropic silver nanoparticles. The ultraviolet-visible (UV-vis) spectra of the reaction mixture containing silver nanoparticles showed a peak at 460 nm, corresponding to the surface plasmon absorbance of silver nanoparticles. Field-emission transmission electron microscopy (FE-TEM) structural characterization revealed the nanobar, pentagon, spherical, icosahedron, hexagonal, truncated triangle, and triangular nanoparticles, with the size range from 30 to 100 nm. The energy-dispersive X-ray (EDX) analysis and elemental mapping results also confirmed that the silver was the predominant component of isolated nanoparticles. The X-ray diffraction (XRD) results correspond to the purity of silver nanoparticles and dynamic light scattering (DLS) result indicated that the average diameter of particles was 111.6 nm. In addition, enhancement in antimicrobial activity of commercial antibiotics was observed against various pathogenic microorganisms such asVibrio parahaemolyticus, Salmonella enterica, Staphylococcus aureus, Bacillus anthracis, Bacillus cereus, Escherichia coli, andCandida albicans.


1999 ◽  
Vol 581 ◽  
Author(s):  
Young Chul Choi ◽  
Dong Jae Bae ◽  
Seung Mi Lee ◽  
Young Soo Park ◽  
Young Hee Lee ◽  
...  

ABSTRACTMonoclinic gallium oxide (β-Ga2O3) nanowires were catalytically synthesized by electric arc discharge of GaN powders mixed with a small amount (less than 5 %) of transition metals under a pressure of 500 Torr (80 %-Ar + 20 %-O2). Scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM) images showed that the average diameter of the wires were about 30 nm and their lengths were as long as up to one hundred micrometer, resulting in extremely large aspect ratio. Fourier diffractogram was indicative of single crystalline nature of the β-Ga2O3 wire. HRTEM image also showed β-Ga2O3 with twin defects at the center of the wire which might play as nucleation seeds. Both X-ray diffraction (XRD) patterns and FT-Raman spectra of the wires identified the observed nanowires as monoclinic crystalline gallium oxides.


MgSrAl10O17:xDy3+ nanophosphors were fabricated by combustion method for different concentrations (x = 0, 0.0005, 0.001, 0.005, 0.01 and 0.02 mol) of Dysprosium (Dy). The synthesized nanophosphors were characterized by XRD, SEM, TEM, FTIR, PL and TL. The XRD (X-ray diffraction) showed crystalline hexagonal structure with preferred orientation of (107) plane. SEM (Scanning electron microscope) result shows the formation of nanosheets in irregular shape. TEM (transmission electron microscope) study revealed the nanoparticles within average diameter size of 30 nm. The FTIR ( fourier transform infrared spectrum) shows absorption peaks in numerous regions. TL (thermo-luminescence) properties included TL glow curves and TL response for different concentrations of Dy after exposure of 700 Gy gamma rays. TL intensity was found to increase with increase in concentration of dopant Dy and was found to show best result for x=0.02. Further PL (photoluminescence) characterization ofMgSrAl10O17:0.02 Dy3+ phosphor exhibits two main emission peaks at 484 and 575 nm due to Dy3+ ion, when excited with 350 nm wavelength.


2021 ◽  
Author(s):  
Yan Chen ◽  
Yuemei Lan ◽  
Dong Wang ◽  
Guoxing Zhang ◽  
Wenlong Peng ◽  
...  

A series of Gd2-xMoO6:xEu3+(x=0.18-0.38) nanophosphors were synthesized by the solvothermal method. The properties of this nanophosphor were characterized by x-ray diffraction (XRD), transmission electron microscope (TEM), fluorescence spectra and diffuse...


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2326
Author(s):  
Entesar Ali Ganash ◽  
Reem Mohammad Altuwirqi

In this work, silver nanoparticles (Ag NPs) were synthesized using a chemical reduction approach and a pulsed laser fragmentation in liquid (PLFL) technique, simultaneously. A laser wavelength of 532 nm was focused on the as produced Ag NPs, suspended in an Origanum majorana extract solution, with the aim of controlling their size. The effect of liquid medium concentration and irradiation time on the properties of the fabricated NPs was studied. While the X-ray diffraction (XRD) pattern confirmed the existence of Ag NPs, the UV–Vis spectrophotometry showed a significant absorption peak at about 420 nm, which is attributed to the characteristic surface plasmon resonance (SPR) peak of the obtained Ag NPs. By increasing the irradiation time and the Origanum majora extract concentration, the SPR peak shifted toward a shorter wavelength. This shift indicates a reduction in the NPs’ size. The effect of PLFL on size reduction was clearly revealed from the transmission electron microscopy images. The PLFL technique, depending on experimental parameters, reduced the size of the obtained Ag NPs to less than 10 nm. The mean zeta potential of the fabricated Ag NPs was found to be greater than −30 mV, signifying their stability. The Ag NPs were also found to effectively inhibit bacterial activity. The PLFL technique has proved to be a powerful method for controlling the size of NPs when it is simultaneously associated with a chemical reduction process.


2019 ◽  
Vol 49 (1) ◽  
Author(s):  
Giriraj Tailor ◽  
Jyoti Chaudhay ◽  
Deepshikha Verma ◽  
Bhupendra Kr. Sarma

AbstractThe present study reports the novel synthesis of Zinc nanoparticles (Zn NPs) by thermal decomposition method and its characterisation by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and X-ray Diffraction Measurements (XRD). Synthesis of Zn NPs was achieved by using thermosetting polymer and zinc salts as precursor. Zn NPs were obtained on calcination at 850 °C for 30 min. SEM study reveals that synthesized nanoparticles are spherical in shape. XRD analysis shows that the Zn NPs formed are low crystalline in nature.


2011 ◽  
Vol 80-81 ◽  
pp. 217-220 ◽  
Author(s):  
Xue Qing Yue ◽  
Hai Jun Fu ◽  
Da Jun Li

Graphite encapsulated nickel nanoparticles were prepared by ball milling andsubsequently annealing a mixture of expanded graphite with nickel powders. The products were characterized by transmission electron microscope and X-ray diffraction. The formation mechanism of the products was discussed. Results show that the products have a size range of 20-150 nm. The graphite and nickel in the products all exhibit a high crystallinity.


Sign in / Sign up

Export Citation Format

Share Document