scholarly journals Genetic Diversity in 19th Century Barley (Hordeum vulgare) Reflects Differing Agricultural Practices and Seed Trade in Jämtland, Sweden

Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 315
Author(s):  
Martin N. A. Larsson ◽  
Matti W. Leino ◽  
Jenny Hagenblad

Landrace crops are important genetic resources, both for plant breeding efforts and for studying agrarian history. The distribution of genetic diversity among landraces can reflect effects of climate, economic structure, and trade also over a limited spatial and temporal scale. In this study, we have SNP genotyped historical barley seed samples from the late 19th century, together with extant barley landrace accessions from Jämtland, Sweden, a county centrally located, situated between Sweden and Norway. We found two main genetic clusters, one associated with the main agricultural district around lake Storsjön and one in the peripheral areas. Data was also compared with genotypes from landraces from across the Scandinavian peninsula. Accessions from the peripheral part of Jämtland show genetic similarity to accessions from a large part of central Scandinavia, while the accessions from the Storsjön district are more differentiabted. We suggest that these dissimilarities in genetic diversity distribution are explained by differences in the relative importance of agriculture and trading. We further compared the historical material with ex situ preserved extant landraces from the same region and found that their genetic diversity was not always representative of the given provenience. The historical material, in contrast, proved particularly valuable for assessing how crop genetic diversity has historically been influenced by economic focus.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247586
Author(s):  
Christine E. Edwards ◽  
Brooke C. Tessier ◽  
Joel F. Swift ◽  
Burgund Bassüner ◽  
Alexander G. Linan ◽  
...  

Understanding genetic diversity and structure in a rare species is critical for prioritizing both in situ and ex situ conservation efforts. One such rare species is Physaria filiformis (Brassicaceae), a threatened, winter annual plant species. The species has a naturally fragmented distribution, occupying three different soil types spread across four disjunct geographical locations in Missouri and Arkansas. The goals of this study were to understand: (1) whether factors associated with fragmentation and small population size (i.e., inbreeding, genetic drift or genetic bottlenecks) have reduced levels of genetic diversity, (2) how genetic variation is structured and which factors have influenced genetic structure, and (3) how much extant genetic variation of P. filiformis is currently publicly protected and the implications for the development of conservation strategies to protect its genetic diversity. Using 16 microsatellite markers, we genotyped individuals from 20 populations of P. filiformis from across its geographical range and one population of Physaria gracilis for comparison and analyzed genetic diversity and structure. Populations of P. filiformis showed comparable levels of genetic diversity to its congener, except a single population in northwest Arkansas showed evidence of a genetic bottleneck and two populations in the Ouachita Mountains of Arkansas showed lower genetic variation, consistent with genetic drift. Populations showed isolation by distance, indicating that migration is geographically limited, and analyses of genetic structure grouped individuals into seven geographically structured genetic clusters, with geographic location/spatial separation showing a strong influence on genetic structure. At least one population is protected for all genetic clusters except one in north-central Arkansas, which should therefore be prioritized for protection. Populations in the Ouachita Mountains were genetically divergent from the rest of P. filiformis; future morphological analyses are needed to identify whether it merits recognition as a new, extremely rare species.


Author(s):  
Paula Bramel ◽  

This chapter reviews the key issues and challenges facing genebanks in preserving crop genetic diversity ex situ. Local crop genetic diversity is challenged with changes in land use, urbanization, land degradation, changes in agricultural practises, availability of improved varieties, changes in market preference, and the impact of climate change. Efforts have been made to secure plant genetic resources ex situ for future use but there are significant issues related to cost effective, efficient, secure, rational, and sustainable long-term ex situ conservation. It begins by addressing issues for the composition of ex situ collections and moves on to discuss issues for routine operations for conservation. The chapter also highlights issues for the use of conserved genetic resources, before concluding with a summary of why the development of sustainable genebank systems is so important.


Genome ◽  
1999 ◽  
Vol 42 (4) ◽  
pp. 562-569 ◽  
Author(s):  
S Jana

Crop genetic resources (CGRs) are renewable resources. These resources are enriched rather than depleted by their use in research and plant breeding. Both at the time of Vavilov and, later, in the early 1970s, when concerted international efforts to collect and preserve CGRs started with the initiatives of the International Board for Plant Genetic Resources (IBPGR), CGRs were considered to be the common heritage of humankind. Now, they are widely accepted as "national heritage." Possible impacts of this nationalization on the utilization and enrichment of global crop genetic diversity and, consequently, on global food security are issues of great significance. At present, efficient management and adequate use of CGRs are more important concerns than their further exploration and collection. To increase the use of preserved CGRs in plant breeding, the formation of core collections, by selecting representative subsets from large ex situ collections of CGRs, was recommended in 1984. Since then, the core-collection strategy has been further justified as a practical approach to genetic resources management, as well as to their conservation. As a cost-saving germplasm-management strategy, the core-collection concept has considerable merit. However, the rapidly increasing popularity of core collections may undermine the genetic wealth stored in national gene banks of both developed and developing countries. Distinction is made between subsets of working collections and core collections. When a small number of CGRs is required for specific plant breeding purposes, a properly formed working collection is more useful than a representative collection. Despite the relative abundance of genetic diversity in crop plants in traditional agroecosystems, maintenance of these agroecosystems is not a realistic long-term alternative for preserving crop genetic diversity and ensuring global food security. What is needed in the "gene-rich" developing countries is the adoption of "biodiversity friendly" plant breeding and agricultural practices.Key words: crop genetic resources, core collection, germplasm conservation, in situ conservation, ex situ conservation, modern landraces.


2006 ◽  
Vol 4 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Yong-Bi Fu

There is a long-standing concern that modern plant breeding reduces crop genetic diversity, which may have consequences for the vulnerability of crops to changes in pests, diseases, climate and agricultural practices. Recent molecular assessments of genetic diversity changes in existing genepools of major agricultural crops may shed some light on the impact of plant breeding on crop genetic diversity. Reviewing published assessments revealed different impacts of plant breeding on improved genepools, not only narrowing or widening their genetic base, but also shifting their genetic background. In general, the genome-wide reduction of crop genetic diversity accompanying genetic improvement over time is minor, but allelic reduction at individual chromosomal segments is substantial. More efforts are needed to assess what proportion of lost alleles is associated with undesirable traits.


2017 ◽  
Vol 16 (2) ◽  
pp. 112-126 ◽  
Author(s):  
I. Thormann ◽  
P. Reeves ◽  
S. Thumm ◽  
A. Reilley ◽  
J. M. M. Engels ◽  
...  

AbstractIn many regions of the world, the cultivation of landraces is still common, in particular in centres of crop diversity. Significant effort has been put into ex situ conservation of landraces but limited data exist on the changes in genetic diversity that occur over time in farmers’ fields. We assessed temporal changes in barley landrace diversity in Jordan using seed samples collected in 1981 and 2012 from the same locations. We did not observe significant changes in the amount of genetic diversity, but samples collected in 2012 were more homogenous and less locally distinct. In two sites, we observed replacement of the old material. We observed a change in phenotype, and phenotypes were found to be more homogeneous among sites in 2012. Climate changed significantly over the study period, becoming hotter and dryer, but we did not identify any correlation between the changes in climate and genetic and phenotypic variations. While the amount of genetic diversity in terms of allelic richness and number of multi-locus genotypes has been maintained, local distinctiveness among landrace barley populations in Jordan was reduced.


2019 ◽  
Vol 12 ◽  
pp. 194008291984950 ◽  
Author(s):  
Yayan Wahyu C. Kusuma ◽  
Siti R. Ariati ◽  
Rosniati A. Risna ◽  
Chika Mitsuyuki ◽  
Yoshihisa Suyama ◽  
...  

Ex situ conservation is an important complementary strategy for in situ to conserve endangered plant species. However, the limited areas designated for ex situ conservation such as in botanic gardens have become a great challenge for conservation practitioners and scientists attempting to optimally conserve the genetic diversity of targeted plant species. Our study aimed to assess genetic diversity and structure of wild seedlings of Vatica bantamensis, an endemic and critically endangered dipterocarp from Java (Indonesia). We also estimated genetic differentiation between the wild seedlings and existing ex situ collection and evaluated the genetic diversity preserved in the ex situ collection. Our analysis, using 730 single-nucleotide polymorphisms loci, showed that wild seedlings exhibited higher genetic diversity than the ex situ collection (nucleotide diversity, µ = 0.26 and 0.16, respectively). Significant genetic differentiation was also detected ( FST = 0.32) between wild seedlings and ex situ collection. Furthermore, we found high kinship within the ex situ collection suggesting low genetic diversity since the founding collection. We also detected three distinct genetic clusters from all samples combined (analysis of molecular variance, ϕ = 0.48, p < .001), with two clusters present in the wild seedlings that were not represented in the ex situ collection. We recommend that supplementary collections from the two newly identified genetic clusters in the wild seedlings should be incorporated to increase genetic diversity in the ex situ collection. Furthermore, our study demonstrated that understanding the population genetics of targeted endangered species provides better results for ex situ conservation strategies.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9897
Author(s):  
Leta Dickinson ◽  
Hilary Noble ◽  
Elliot Gardner ◽  
Aida Shafreena Ahmad Puad ◽  
Wan Nuur Fatiha Wan Zakaria ◽  
...  

Limestone karsts of Southeast Asia can harbor high levels of endemism, but are highly fragmented, increasingly threatened, and their biodiversity is often poorly studied. This is true of the Padawan Limestone Area of Sarawak, Malaysia, home to the endemic Artocarpus annulatus, the closest known wild relative of two important and underutilized fruit tree crops, jackfruit (A. heterophyllus) and cempedak (A. integer). Identifying and conserving crop wild relatives is critical for the conservation of crop genetic diversity and breeding. In 2016 and 2017, five A. annulatus populations were located, and leaf material, locality information, and demographic data were collected. Microsatellite markers were used to assess genetic diversity and structure among populations, and to compare levels of genetic diversity to closely related congeneric species. Results indicate no evidence of inbreeding in A. annulatus, and there is no genetic structure among the five populations. However, diversity measures trended lower in seedlings compared to mature trees, suggesting allelic diversity may be under threat in the youngest generation of plants. Also, genetic diversity is lower in A. annulatus compared to closely related congeners. The present study provides a baseline estimate of A. annulatus genetic diversity that can be used for comparison in future studies and to other species in the unique limestone karst ecosystems. Considerations for in situ and ex situ conservation approaches are discussed.


2008 ◽  
Vol 7 (02) ◽  
pp. 163-168 ◽  
Author(s):  
Brian V. Ford-Lloyd ◽  
Darshan Brar ◽  
Gurdev S. Khush ◽  
Michael T. Jackson ◽  
Parminder S. Virk

Changes in global biodiversity at the genetic level have proved difficult to determine for most organisms because of lack of standardized, repeated or historical data; this hampers the attempts to meet the convention on biological diversity (CBD) 2010 targets of reducing loss of genetic diversity, particularly of crop species. For rice, where germplasm and genetic data have been collected throughout South and Southeast Asia over many decades, contrary to popular opinion, we have been unable to detect a significant reduction of available genetic diversity in our study material. This absence of a decline may be viewed positively; over the 33-year timescale of our study, genetic diversity amongst landraces grown in traditional agricultural systems was still sufficiently abundant to be collected forex situconservation. However, if significant genetic erosion does take place in the future as a result of accelerating global warming and/or major changes in land use or agricultural practices, will it be catastrophic or gradual, and how will it be detected? We have shown a strong link between numbers of landraces collected (and therefore extant) and genetic diversity; hence, we have a clear indicator to detect loss of genetic diversity in the future. Our findings lend considerable support forex situconservation of germplasm; the more than substantial genetic resources already in genebanks are now safe. On the other hand, it is the germplasm growing in farmers' fields, continually adapting genetically to changing environmental conditions and evolving novel genetic forms, whose future has been much less certain but can now be effectively monitored using our criteria.


Sign in / Sign up

Export Citation Format

Share Document