scholarly journals Genetic diversity and structure of the critically endangered Artocarpus annulatus, a crop wild relative of jackfruit (A. heterophyllus)

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9897
Author(s):  
Leta Dickinson ◽  
Hilary Noble ◽  
Elliot Gardner ◽  
Aida Shafreena Ahmad Puad ◽  
Wan Nuur Fatiha Wan Zakaria ◽  
...  

Limestone karsts of Southeast Asia can harbor high levels of endemism, but are highly fragmented, increasingly threatened, and their biodiversity is often poorly studied. This is true of the Padawan Limestone Area of Sarawak, Malaysia, home to the endemic Artocarpus annulatus, the closest known wild relative of two important and underutilized fruit tree crops, jackfruit (A. heterophyllus) and cempedak (A. integer). Identifying and conserving crop wild relatives is critical for the conservation of crop genetic diversity and breeding. In 2016 and 2017, five A. annulatus populations were located, and leaf material, locality information, and demographic data were collected. Microsatellite markers were used to assess genetic diversity and structure among populations, and to compare levels of genetic diversity to closely related congeneric species. Results indicate no evidence of inbreeding in A. annulatus, and there is no genetic structure among the five populations. However, diversity measures trended lower in seedlings compared to mature trees, suggesting allelic diversity may be under threat in the youngest generation of plants. Also, genetic diversity is lower in A. annulatus compared to closely related congeners. The present study provides a baseline estimate of A. annulatus genetic diversity that can be used for comparison in future studies and to other species in the unique limestone karst ecosystems. Considerations for in situ and ex situ conservation approaches are discussed.

2020 ◽  
Author(s):  
Liu Shuo ◽  
Decroocq Stephane ◽  
Harte Elodie ◽  
Tricon David ◽  
Chague Aurelie ◽  
...  

AbstractIn-depth characterization of the genetic diversity and population structure of wild relatives of crops is of paramount importance for genetic improvement and biodiversity conservation, and is particularly crucial when the wild relatives of crops are endangered. In this study, we therefore sampled the Alpine plum (Briançon apricot) Prunus brigantina Vill. across its natural distribution in the French Alps, where its populations are severely fragmented and its population size strongly impacted by humans. We analysed 71 wild P. brigantina samples with 34 nuclear markers and studied their genetic diversity and population structure, with the aim to inform in situ conservation measures and build a core collection for long-term ex-situ conservation. We also examined the genetic relationships of P. brigantina with other species in the Prunophora subgenus, encompassing the Prunus (Eurasian plums), Prunocerasus (North-American plums) and Armeniaca (apricots) sections, to check its current taxonomy. We detected a moderate genetic diversity in P. brigantina and a Bayesian model-based clustering approach revealed the existence of three genetically differentiated clusters, endemic to three geographical regions in the Alps, which will be important for in situ conservation measures. Based on genetic diversity and population structure analyses, a subset of 36 accessions were selected for ex-situ conservation in a core collection that encompasses the whole detected P. brigantina allelic diversity. Using a dataset of cultivated apricots and wild cherry plums (P. cerasifera) genotyped with the same markers, we detected gene flow neither with European P. armeniaca cultivars nor with diploid plums. In contrast with previous studies, dendrograms and networks placed P. brigantina closer to Armeniaca species than to Prunus species. Our results thus confirm the classification of P. brigantina within the Armeniaca section; it also illustrates the importance of the sampling size and design in phylogenetic studies.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5296 ◽  
Author(s):  
Zhi-Zhong Li ◽  
Andrew W. Gichira ◽  
Qing-Feng Wang ◽  
Jin-Ming Chen

Brasenia schreberiJ.F. Gmelin (Cabombaceae), an aquatic herb that occurs in fragmented locations in China, is rare and endangered. Understanding its genetic diversity and structure is crucial for its conservation and management. In this study, 12 microsatellite markers were used to estimate the genetic diversity and variation in 21 populations ofB. schreberiin China. A total of 61 alleles were found; assessment of allelic richness (Ar = 1.92) and observed and expected heterozygosity (HO= 0.200,HE= 0.256) suggest lower genetic diversity compared to some endangered species, and higher variation was observed within populations (58.68%) rather than among populations (41.32%). No significant correlation between geographical and genetic distance among populations was detected (Mantel test,r= 0.0694;P= 0.7985), which may have likely resulted from barriers to gene flow (Nm = 0.361) that were produced by habitat fragmentation. However, Bayesian and neighbor-joining cluster analyses suggest a population genetic structure consisting of two clusters (I and II) or four subclusters (I-1, 2 and II-1, 2). The genetic structure and distribution ofB. schreberiin China may have involved glacial refugia that underwent range expansions, introgression, and habitat fragmentation. The findings of the present study emphasize the importance for both in situ and ex situ conservation efforts.


Silva Fennica ◽  
2020 ◽  
Vol 54 (5) ◽  
Author(s):  
Agnese Gailīte ◽  
Anita Gaile ◽  
Dainis Ruņģis

L., L. and L. belong to the genus . These wild species are widely distributed and ecologically important within the Baltic countries but they have not been extensively studied using molecular markers. EST-SSR and cpSSR markers were used to investigate the population structure and genetic diversity of these species to obtain information useful for the development of conservation strategies. Wild species populations are moderately genetically differentiated, with some populations more highly differentiated, but without higher order clustering of groups of populations, indicating that there are no dispersal barriers for these species within the Baltic countries. Genetic diversity of populations growing in protected areas, managed forests and intensively utilised public recreational areas is similar. The results from this study can be utilised for the selection of populations for the conservation of the studied species. In addition, complementary conservation strategies can be used for the preservation of rare varieties (e.g. var. ).VacciniummyrtillusV. vitis-idaeaV. uliginosumVacciniumin situVacciniumin situVacciniumex situV. myrtillusleucocarpum


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 638
Author(s):  
Marcelo B. Medeiros ◽  
José F. M. Valls ◽  
Aluana G. Abreu ◽  
Gustavo Heiden ◽  
Suelma Ribeiro-Silva ◽  
...  

This study presents the status of ex situ and in situ conservation for the crop wild relatives of rice, potato, sweet potato, and finger millet in Brazil, and the subsequent germplasm collection expeditions. This research is part of a global initiative entitled “Adapting Agriculture to Climate Change: Collecting, Protecting, and Preparing Crop Wild Relatives” supported by the Global Crop Diversity Trust. Species of the primary, secondary, and tertiary gene pools with occurrences reported in Brazil were included: Oryza alta Swallen, O. grandiglumis (Döll) Prod., O. latifolia Desv., O. glumaepatula Steud., Eleusine tristachya (Lam.) Lam., E. indica (L.) Gaertn., Solanum commersonii Dunal, S. chacoense Bitter, Ipomoea grandifolia (Dammer) O’Donell, I. ramosissima (Poir.) Choisy, I. tiliacea (Willd.) Choisy, I. triloba L., and I. cynanchifolia Meisn. The status of the ex situ and in situ conservation of each taxon was assessed using the gap analysis methodology, and the results were used to plan 16 germplasm collection expeditions. Seeds of the collected material were evaluated for viability, and the protocols for seed germination and cryopreservation were tested. The final conservation score, resulting from the gap analysis and including the average of the ex situ and in situ scores, resulted in a classification of medium priority of conservation for all the species, with the exception of I. grandifolia (high priority). The total accessions collected (174) almost doubled the total accessions of these crop wild relatives incorporated in Embrapa’s ex situ conservation system prior to 2015. In addition, accessions for practically absent species were collected for the ex situ conservation system, such as Ipomoea species, Eleusine indica, and Solanum chacoense. The methods used for dormancy breaking and low temperature conservation for the Oryza, Eleusine, and Ipomoea species were promising for the incorporation of accessions in the respective gene banks. The results show the importance of efforts to collect and conserve ex situ crop wild relatives in Brazil based on previous gap analysis. The complementarity with the in situ strategy also appears to be very promising in the country.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245965
Author(s):  
Catherine Kiwuka ◽  
Eva Goudsmit ◽  
Rémi Tournebize ◽  
Sinara Oliveira de Aquino ◽  
Jacob C. Douma ◽  
...  

Wild genetic resources and their ability to adapt to environmental change are critically important in light of the projected climate change, while constituting the foundation of agricultural sustainability. To address the expected negative effects of climate change on Robusta coffee trees (Coffea canephora), collecting missions were conducted to explore its current native distribution in Uganda over a broad climatic range. Wild material from seven forests could thus be collected. We used 19 microsatellite (SSR) markers to assess genetic diversity and structure of this material as well as material from two ex-situ collections and a feral population. The Ugandan C. canephora diversity was then positioned relative to the species’ global diversity structure. Twenty-two climatic variables were used to explore variations in climatic zones across the sampled forests. Overall, Uganda’s native C. canephora diversity differs from other known genetic groups of this species. In northwestern (NW) Uganda, four distinct genetic clusters were distinguished being from Zoka, Budongo, Itwara and Kibale forests A large southern-central (SC) cluster included Malabigambo, Mabira, and Kalangala forest accessions, as well as feral and cultivated accessions, suggesting similarity in genetic origin and strong gene flow between wild and cultivated compartments. We also confirmed the introduction of Congolese varieties into the SC region where most Robusta coffee production takes place. Identified populations occurred in divergent environmental conditions and 12 environmental variables significantly explained 16.3% of the total allelic variation across populations. The substantial genetic variation within and between Ugandan populations with different climatic envelopes might contain adaptive diversity to cope with climate change. The accessions that we collected have substantially enriched the diversity hosted in the Ugandan collections and thus contribute to ex situ conservation of this vital genetic resource. However, there is an urgent need to develop strategies to enhance complementary in-situ conservation of Coffea canephora in native forests in northwestern Uganda.


AGROFOR ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zoran MALETIC

Recently, highly productive breeds of various species of domestic animals have been used in livestock production, which has resulted in the destruction of indigenous breeds of domestic animals around the world, even in our area. This is the first reason why indigenous races and strains have been endangered. Another reason is that domestic, indigenous breeds were crossed with specialized breeds, which were imported, and in that way their genetic diversity was negatively affected. Resistance is lost, adaptation to the conditions in which they were created, the ability to survive in nature. Indigenous breeds of different species of domestic animals, which are recognized in the Republic of Srpska (BiH) are gatačko cattle and buša (cattle), Vlašić pramenka, Podveleška pramenka, Kupres pramenka (sheep), domestic Balkan horned goat (goats), Bosnian mountain horse (horses), mangulica (pigs) and pogrmuša hen or živičarka hen (poultry). By acceding to international conventions, BiH /Republic of Srpska has committed itself to establishing a system of measures that will enable the conservation of biological diversity and the protection of indigenous and endangered breeds of domestic animals. The choice of a strategy for the conservation of diversity, the establishment of an adequate conservation scheme, and the implementation of a conservation strategy are some of the key elements of any process for the conservation of genetic diversity. Preservation of autochthonous and protected breeds of domestic animals is possible through preservation in the original environment (in situ) and preservation outside the original environment (ex situ). There is a possibility of combining these models of conservation of animal genetic resources.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247586
Author(s):  
Christine E. Edwards ◽  
Brooke C. Tessier ◽  
Joel F. Swift ◽  
Burgund Bassüner ◽  
Alexander G. Linan ◽  
...  

Understanding genetic diversity and structure in a rare species is critical for prioritizing both in situ and ex situ conservation efforts. One such rare species is Physaria filiformis (Brassicaceae), a threatened, winter annual plant species. The species has a naturally fragmented distribution, occupying three different soil types spread across four disjunct geographical locations in Missouri and Arkansas. The goals of this study were to understand: (1) whether factors associated with fragmentation and small population size (i.e., inbreeding, genetic drift or genetic bottlenecks) have reduced levels of genetic diversity, (2) how genetic variation is structured and which factors have influenced genetic structure, and (3) how much extant genetic variation of P. filiformis is currently publicly protected and the implications for the development of conservation strategies to protect its genetic diversity. Using 16 microsatellite markers, we genotyped individuals from 20 populations of P. filiformis from across its geographical range and one population of Physaria gracilis for comparison and analyzed genetic diversity and structure. Populations of P. filiformis showed comparable levels of genetic diversity to its congener, except a single population in northwest Arkansas showed evidence of a genetic bottleneck and two populations in the Ouachita Mountains of Arkansas showed lower genetic variation, consistent with genetic drift. Populations showed isolation by distance, indicating that migration is geographically limited, and analyses of genetic structure grouped individuals into seven geographically structured genetic clusters, with geographic location/spatial separation showing a strong influence on genetic structure. At least one population is protected for all genetic clusters except one in north-central Arkansas, which should therefore be prioritized for protection. Populations in the Ouachita Mountains were genetically divergent from the rest of P. filiformis; future morphological analyses are needed to identify whether it merits recognition as a new, extremely rare species.


Author(s):  
Paula Bramel ◽  

This chapter reviews the key issues and challenges facing genebanks in preserving crop genetic diversity ex situ. Local crop genetic diversity is challenged with changes in land use, urbanization, land degradation, changes in agricultural practises, availability of improved varieties, changes in market preference, and the impact of climate change. Efforts have been made to secure plant genetic resources ex situ for future use but there are significant issues related to cost effective, efficient, secure, rational, and sustainable long-term ex situ conservation. It begins by addressing issues for the composition of ex situ collections and moves on to discuss issues for routine operations for conservation. The chapter also highlights issues for the use of conserved genetic resources, before concluding with a summary of why the development of sustainable genebank systems is so important.


2019 ◽  
Vol 17 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Dickson Ng'uni ◽  
Graybill Munkombwe ◽  
Godfrey Mwila ◽  
Hannes Gaisberger ◽  
Joana Magos Brehm ◽  
...  

AbstractCrop wild relatives (CWR) are valuable gene pools for crop improvement and offer unique potential and opportunity for enhancing food security and adaptation to climate change. However, current actions towards conservation of plant genetic resources in Zambia do not adequately cover CWR occurring in the country. The article describes the process leading to the development of a national strategic action plan (NSAP) for the conservation and sustainable use of priority CWR in Zambia. Based on 59 prioritized crops, a partial checklist of 459 CWR taxa was generated from the national flora checklist of 6305 taxa. The generated CWR taxa were prioritized based on the socio-economic value of the related crop, their utilization potential in crop improvement, relative distribution and threat status to produce 30 prioritized CWR taxa. Occurrence data were compiled for all CWR inventory taxa and used in spatial analyses to establish species distribution, species richness, gaps in in situ conservation and genebank collections, and to identify priority sites for in situ conservation and ex situ collecting. Consistent with the national developmental agenda, along with the contribution of national stakeholders, spatial analyses of occurrence data of priority CWR taxa are valuable input for the development of the NSAP for the conservation and sustainable use of the priority CWR.


Sign in / Sign up

Export Citation Format

Share Document