scholarly journals The Number and Distribution of Introduced and Naturalized Parrots

Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 412
Author(s):  
Carlos E. Calzada Preston ◽  
Stephen Pruett-Jones

Parrots have been transported and traded by humans for at least the last 2000 years and this trade continues unabated today. This transport of species has involved the majority of recognized parrot species (300+ of 382 species). Inevitably, some alien species either escape captivity or are released and may establish breeding populations in the novel area. With respect to parrots, established but alien populations are becoming common in many parts of the world. In this review, we attempt to estimate the total number of parrot species introduced into the wild in non-native areas and assess how many of these have self-sustaining breeding populations. Based the public databases GAVIA, eBird, and iNaturalist, 166 species of Psittaciformes have been introduced (seen in the wild) into 120 countries or territories outside of the native range. Of these, 60 species are naturalized, and an additional 11 species are breeding in at least one country outside of their native range (86 countries or territories total). The Rose-ringed Parakeet (Psittacula krameri) and Monk Parakeet (Myiopsitta monachus) are the most widely distributed and successful of the introduced parrots, being naturalized in 47 and 26 countries or territories, respectively. Far and away, the United States and its territories support the greatest number of naturalized parrots, with 28 different species found in either the continental US, or Hawaii or Puerto Rico. Naturalized species as well as urbanized native species of parrots are likely to continue increasing in numbers and geographical range, and detailed studies are needed to both confirm species richness in each area as well mitigate potential ecological impacts and conflicts with humans.

EDIS ◽  
2009 ◽  
Vol 2009 (5) ◽  
Author(s):  
Steve A. Johnson ◽  
Sam Logue

WEC-257, a 6-page illustrated fact sheet by Steve A. Johnson and Sam Logue, introduces this small to medium-sized member of the parrot family that has become an established non-native bird in Florida — species description, similar species, native range and habitats, mode of introduction, introduced range and habitats, ecology, ecological impacts, impacts on people and pets, solutions, and how you can help. Includes additional resources. Published by the UF Department of Wildlife Ecology and Conservation, June 2009.


2021 ◽  
Author(s):  
Dailos Hernández-Brito ◽  
José L Tella ◽  
Guillermo Blanco ◽  
Martina Carrete

Abstract Certain traits of recipient environments, such as the availability of limiting resources, strongly determine the establishment success and spread of non-native species. These limitations may be overcome through behavioral plasticity, allowing them to exploit alternative resources. Here, we show how a secondary cavity nester bird, the rose-ringed parakeet Psittacula krameri, innovates its nesting behavior as a response to the shortage of tree cavities for nesting in its invasive range in Tenerife (Canary Islands). We observed that some breeding pairs excavated their own nest cavities in palms, thus becoming primary cavity nester, whereas others occupied nests built with wood sticks by another invasive species, the monk parakeet Myiopsitta monachus. The use of these novel nesting strategies increased the number of breeding pairs by up to 52% over 6 years, contributing to a 128.8% increase of the whole population. Innovative nests were located at greater heights above ground and were more aggregated around conspecifics but did not result in greater breeding success than natural cavities. Occupation of monk parakeet colonies by rose-ringed parakeets also benefited the former species through a protective-nesting association against nest predators. Our results show how an invasive species innovate nesting behaviors and increase nest-site availability in the recipient environment, thus facilitating its population growth and invasion process. Potential behavioral innovations in other invasive rose-ringed parakeet populations may be overlooked, and should be considered for effective management plans.


2019 ◽  
Vol 13 (1) ◽  
pp. 70-77 ◽  
Author(s):  
Jialiang Zhang ◽  
Evan Siemann ◽  
Baoliang Tian ◽  
Wei Huang ◽  
Jianqing Ding

Abstract Aims Seeds of many invasive plants germinate more quickly than those of native species, likely facilitating invasion success. Assessing the germination traits and seed properties simultaneously for introduced and native populations of an invasive plant is essential to understanding biological invasions. Here, we used Triadica sebifera as a study organism to examine intraspecific differences in seed germination together with seed characteristics. Methods We measured physical (volume, mass, coat hardness and coat thickness of seeds) and chemical (crude fat, soluble protein, sugar, gibberellins [GA] and abscisic acid [ABA] of kernels) properties of T. sebifera seeds collected in 2017 from 12 introduced (United States) populations and 12 native (China) populations and tested their germination rates and timing in a greenhouse experiment in China. Furthermore, we conducted an extra experiment in the United States using seeds collected in 2016 and 2017 to compare the effects of study sites (China vs. United States) and seed collection time (2016 vs. 2017) on seed germination. Important Findings Seeds from the introduced range germinated faster than those from the native range. Physical and chemical measurements showed that seeds from the introduced range were larger, had higher GA concentrations and GA:ABA ratio, but lower crude fat concentrations compared to those from the native range. There were no significant differences in seed mass, coat hardness and coat thickness or kernel ABA, soluble protein or sugar concentrations between seeds from introduced vs. native ranges. Germination rates were correlated between United States and China greenhouses but germination rates for populations varied between collection years. Our results suggest that larger seeds and higher GA likely contribute to faster germination, potentially facilitating T. sebifera invasion in the introduced range.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 192
Author(s):  
Francisco Morinha ◽  
Martina Carrete ◽  
José L. Tella ◽  
Guillermo Blanco

The psittacine beak and feather disease (PBFD) is a globally widespread infectious bird disease that mainly affects species within the Order Psittaciformes (parrots and allies). The disease is caused by an avian circovirus (the beak and feather disease virus, BFDV), which is highly infectious and can lead to severe consequences in wild and captive populations during an outbreak. Both legal and illegal trading have spread the BFDV around the world, although little is known about its prevalence in invasive parrot populations. Here, we analyze the BFDV prevalence in sympatric invasive populations of rose-ringed (Psittacula krameri) and monk parakeets (Myiopsitta monachus) in Southern Spain. We PCR-screened 110 blood samples (55 individuals from each species) for BFDV and characterized the genotypes of five positives from each species. About 33% of rose-ringed parakeets and 37% of monk parakeets sampled were positive for BFDV, while neither species showed disease symptoms. The circovirus identified is a novel BFDV genotype common to both species, similar to the BFDV genotypes detected in several parrot species kept in captivity in Saudi Arabia, South Africa and China. Our data evidences the importance of an accurate evaluation of avian diseases in wild populations, since invasive parrots may be bringing BFDV without showing any visually detectable clinical sign. Further research on the BFDV prevalence and transmission (individual–individual, captive–wild and wild–captive) in different bird orders and countries is crucial to understand the dynamics of the viral infection and minimize its impact in captive and wild populations.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 683
Author(s):  
Dailos Hernández-Brito ◽  
Martina Carrete ◽  
Guillermo Blanco ◽  
Pedro Romero-Vidal ◽  
Juan Carlos Senar ◽  
...  

While most of the knowledge on invasive species focuses on their impacts, little is known about their potential positive effects on other species. Invasive ecosystem engineers can disrupt recipient environments; however, they may also facilitate access to novel resources for native species. The monk parakeet (Myiopsitta monachus) is a worldwide invader and the only parrot that builds its own communal nests, which can be used by other species. However, the ecological effects of these interspecific interactions are barely known. We compared the role of the monk parakeet as a nest-site facilitator in different rural and urban areas, both invaded and native, across three continents and eight breeding seasons. A total of 2690 nests from 42 tenant species, mostly cavity-nesting birds, were recorded in 26% of 2595 monk parakeet nests. Rural and invaded areas showed the highest abundance and richness of tenant species. Multispecies communal nests triggered interspecific aggression between the monk parakeet host and its tenants, but also a cooperative defense against predators. Despite the positive effects for native species, monk parakeets also facilitate nesting opportunities to other non-native species and may also transmit diseases to tenants, highlighting the complexity of biotic interactions in biological invasions.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1278-1278 ◽  
Author(s):  
A. J. Caesar ◽  
R. T. Lartey ◽  
T. Caesar-TonThat ◽  
J. Gaskin

The exotic, invasive perennial rangeland weed Lepidium draba spreads rapidly and reduces native species diversity. The extensive root system of L. draba constitutes 76% of its biomass (4). Thus, searches have been done for biocontrol agents that target root tissue or that may interact with a weevil, Ceutorhynchus assimilis, that causes galls in the crown area of L. draba. An association of Rhizoctonia spp. with root tissue of plants galled by the weevil has been documented in Europe (3). The possible presence of soilborne pathogens similar to those found in the native range has been the subject of L. draba surveys in the United States. One such survey in 2008 detected a few plants with reddened and chlorotic foliage in a stand near Shepherd, MT. Such symptoms typically indicate the occurrence of soilborne diseases on L. draba in the native range of the weed (2). The site had shown a gradual increase in the range of detectable pathogens beginning with foliar pathogens in 1997. In 2010, at the Shepherd site, L. draba plants with similar (but more severe) symptoms to those seen in 2008 were noted in a different area of the stand. Excavation of the roots in both years revealed brown, sunken crown and root cankers. Pieces of root tissue were excised from the lesions and plated on acidified PDA and Ko and Hora medium. A non-sporulating fungus was isolated from three plants. Colonies of the isolates on PDA were typical of known Rhizoctonia spp. The 2010 isolates were determined to be multinucleate using DAPI and were paired with 14 tester (including subgroups) isolates of AG-1 to AG-4 on water agar. Anastomosis was observed between the multinucleate isolates and the AG-2-1 tester isolate. Sequence analysis of ITS of the rDNA of a multinucleate isolate (GenBank KJ545577) indicated 99% similarity with an accession of R. solani AG 2-1 (AB547381). The 2008 isolates were binucleate. A binucleate isolate, KJ545578, had 100% similarity with an isolate of Rhizoctonia spp. AG-A (AY927356). Pathogenicity tests consisted of planting 6-week-old seedlings of L. draba, one per pot, in ten 85-cm-diameter pots of pasteurized soil mix infested with Rhizoctonia-colonized barley grain that had been dried and milled. An inoculum level of ~8 CFU/g (1) of air-dried soil was established by most probable number calculations from fourfold dilutions of infested soil. Controls were the same number of plants in pasteurized potting mix. Results were recorded after 3 months in a greenhouse at 20–25°C. The test was repeated. Typically, R. solani caused mortality of six to eight plants, from which it was re-isolated, whereas binuclate isolates caused stunting and lower dry weight of L. draba. Control plants remained asymptomatic. This is the first report of R. solani and binucleate Rhizoctonia spp. on L. draba in North America. References: (1) A. J. Caesar et al. Plant Dis. 93:1350, 2009. (2) A. J. Caesar et al. Biol. Control 52:140, 2010. (3) A. J. Caesar et al. Plant Dis. 96:145, 2011. (4) R. F. Miller et al. Agronomy J. 86:487, 1994.


2019 ◽  
pp. 389-395 ◽  
Author(s):  
D. Mazzoni ◽  
N. A. Borray-Escalante ◽  
A. Ortega–Segalerva ◽  
L. Arroyo ◽  
J. González–Solís ◽  
...  

Stable isotope analyses (SIAs) have been widely used in recent years to infer the diet of many species. This isotopic approach requires using diet to tissue discrimination factors (DTDFs) for each prey type and predator tissue, i.e., to determine the difference between the isotopic composition of the predator tissues and the different prey that conform its diet. Information on DTDF values in Psittaciformes is scarce. The aim of this study was to assess DTDF values for the carbon and nitrogen isotopes of the monk parakeet (Myiopsitta monachus) and the ring–necked parakeet (Psittacula krameri), two invasive alien species of concern. We fed captive birds of the two parakeet species on a single–species diet based on sunflower seeds to establish the DTDFs for the blood and feathers. In the monk parakeet (N = 9) DTDFs were Δδ13C 2.14 ‰ ± 0.90 and Δδ15N 3.21 ‰ ± 0.75 for the blood, and Δδ13C 3.97 ‰ ± 0.90 and Δδ15N 3.67 ‰ ± 0.74 for the feathers. In the ring–necked parakeet (N = 9), the DTDFs were Δδ13C (‰) 2.58 ± 0.90 and Δδ15N (‰) 2.35 ± 0.78 for the blood, and Δδ13C 3.64 ‰ ± 0.98 and Δδ15N 4.10 ‰ ± 1.84 for the feathers. DTDF values for the ring–necked parakeet blood were significantly higher than those for the monk parakeet blood. No difference was found between the two species in the DTDF for feathers. Our findings provide the first values of DTDFs for blood and feathers in these parakeets, factors that are key to infer the diet of these species based on SIA.


2019 ◽  
Vol 47 (2) ◽  
pp. 1543-1550
Author(s):  
Francesca S. E. Dawson Pell ◽  
Ben J. Hatchwell ◽  
Alba Ortega-Segalerva ◽  
Deborah A. Dawson ◽  
Gavin J. Horsburgh ◽  
...  

AbstractInvasive species can have wide-ranging negative impacts, and an understanding of the process and success of invasions can be vital to determine management strategies, mitigate impacts and predict range expansions of such species. Monk parakeets (Myiopsitta monachus) and ring-necked parakeets (Psittacula krameri) are both widespread invasive species, but there has been little research into the genetic and social structure of these two species despite the potential links with invasion success. The aim of this study was to isolate novel microsatellite loci from the monk parakeet and characterise them in both monk and ring-necked parakeets in order to facilitate future investigations into their behaviour and population ecology. Sex-typing markers were also tested in both species. Of the 20 microsatellite loci assessed in 24 unrelated monk parakeets, 16 successfully amplified and were polymorphic displaying between 2 and 14 alleles (mean = 8.06). Expected heterozygosity ranged from 0.43 to 0.93 and observed heterozygosity ranged from 0.23 to 0.96. Nine of the 20 loci also successfully amplified and were polymorphic in the ring-necked parakeet, displaying between 2 and 10 alleles. Suitable markers to sex both species and a Z-linked microsatellite locus were identified. A multiplex marker set was validated for monk parakeets. These novel microsatellite loci will facilitate fine and broad-scale population genetic analyses of these two widespread invasive species.


2016 ◽  
Vol 9 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Liviu G. Pârâu ◽  
Diederik Strubbe ◽  
Emiliano Mori ◽  
Mattia Menchetti ◽  
Leonardo Ancillotto ◽  
...  

Background: Alien species are one of the major causes contributing to biodiversity loss. In Europe, over 340 alien bird species have been recorded in the wild, of which 74 are established. Among 12 established alien parrot species in Europe, the Rose-ringed Parakeet (RRP) Psittacula krameri is the most abundant and widespread. Objective: Although one of the best documented alien vertebrates in Europe, historical and current datasets on RRP invasion success and demography have not been systematically collated and analysed. This paper therefore aims to bring together, verify and make available this information. Method: Existing distribution and demographic data for the RRP in Europe were collated from the following sources: (a) literature search; (b) bird sighting databases; (c) regional bird experts; (d) RRP roost counts. With this data, we evaluated population size and growth per population, country and the whole of Europe in the period 1965-2015. Results: The RRP is well established in Europe with at least 90 breeding populations in 10 countries, and a total population size of at least 85,000 birds as of 2015. For Western Europe, long-term demographic data indicate the species has grown considerably in number, although some populations have failed to persist. Data is scarce for countries in Central, Eastern and Northern Europe. Conclusion: Our synthesis reveals a positive demographic trend across Europe, although locally, some populations appear to have reached carrying capacity. Further research is needed to understand the mechanisms underlying RRP population growth in Europe, and methods amenable to citizen-scientists are urgently required to monitor population and range dynamics.


2007 ◽  
Vol 34 (1) ◽  
pp. 8 ◽  
Author(s):  
Christi A. Yoder ◽  
Michael L. Avery ◽  
Kandy L. Keacher ◽  
Eric A. Tillman

Feral monk parakeet (Myiopsitta monachus) populations have become established in the United States and other countries around the world, and can cause damage to electrical facilities. Because the monk parakeet is a highly visible species and there is often public opposition to lethal control measures, non-lethal methods, such as contraception, are being developed to help control the spread of feral populations. Two gavage studies and one ad libitum nesting study were conducted to assess the efficacy of DiazaCon™ as a potential contraceptive for the monk parakeet. The first gavage study compared daily dose levels of 0, 50, 75, and 100 mg DiazaCon™ (kg bodyweight)–1 administered for 10 consecutive days. Cholesterol concentrations decreased significantly concomitant with a significant increase in desmosterol concentrations in the treated groups, but did not vary between sexes. Cholesterol and desmosterol concentrations did not differ significantly among DiazaCon™ groups, and cholesterol remained significantly suppressed 12 weeks after treatment. On the basis of these results, the second gavage study compared 5 or 10 consecutive days of DiazaCon™ administration at 50 mg kg–1 bird–1 day–1. Cholesterol concentrations decreased significantly concomitant with a significant increase in desmosterol concentrations in the treated groups, but did not vary between sexes. Cholesterol and desmosterol concentrations did not differ significantly between DiazaCon™ groups, and cholesterol remained significantly suppressed 11 weeks after treatment. Parakeets in the nesting study were fed hulled sunflower seeds treated with a target dose of 50 mg DiazaCon™ kg–1 bird–1 day–1. Birds consumed enough to receive an average dose of 34 mg kg–1 pair–1 day–1, or 17 mg kg–1 bird–1 day–1. Birds in the treated group laid an average of 1.6 ± 0.7 eggs per clutch compared with 3.9 ± 1.1 eggs per clutch in the untreated control group. None of the eggs laid by treated birds hatched compared with 1.1 ± 0.6 eggs per clutch hatching in the control group. Reproductive inhibition was effective for the length of the breeding season, at which time the study was stopped and no more data were collected. DiazaCon™ is a promising avian oral contraceptive that should be further investigated in a field setting with monk parakeets.


Sign in / Sign up

Export Citation Format

Share Document